IB DP Maths Topic 6.4 Indefinite integration as anti-differentiation SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Consider a function \(f\), for \(0 \le x \le 10\). The following diagram shows the graph of \(f’\), the derivative of \(f\).

The graph of \(f’\) passes through \((2,{\text{ }} – 2)\) and \((5,{\text{ }}1)\), and has \(x\)-intercepts at \(0\), \(4\) and \(6\).

The graph of \(f\) has a local maximum point when \(x = p\). State the value of \(p\), and justify your answer.

[3]
a.

Write down \(f'(2)\).

[1]
b.

Let \(g(x) = \ln \left( {f(x)} \right)\) and \(f(2) = 3\).

Find \(g'(2)\).

[4]
c.

Verify that \(\ln 3 + \int_2^a {g'(x){\text{d}}x = g(a)} \), where \(0 \le a \le 10\).

[4]
d.

The following diagram shows the graph of \(g’\), the derivative of \(g\).

The shaded region \(A\) is enclosed by the curve, the \(x\)-axis and the line \(x = 2\), and has area \({\text{0.66 unit}}{{\text{s}}^{\text{2}}}\).

The shaded region \(B\) is enclosed by the curve, the \(x\)-axis and the line \(x = 5\), and has area \({\text{0.21 unit}}{{\text{s}}^{\text{2}}}\).

Find \(g(5)\).

[4]
e.
Answer/Explanation

Markscheme

\(p = 6\)     A1     N1

recognizing that turning points occur when \(f'(x) = 0\)     R1     N1

eg\(\;\;\;\)correct sign diagram

\(f’\) changes from positive to negative at \(x = 6\)     R1     N1

[3 marks]

a.

\(f'(2) =  – 2\)     A1     N1

[1 mark]

b.

attempt to apply chain rule     (M1)

eg\(\;\;\;\ln (x)’ \times f'(x)\)

correct expression for \(g'(x)\)     (A1)

eg\(\;\;\;g'(x) = \frac{1}{{f(x)}} \times f'(x)\)

substituting \(x = 2\) into their \(g’\)     (M1)

eg\(\;\;\;\frac{{f'(2)}}{{f(2)}}\)

\( – 0.666667\)

\(g'(2) =  – \frac{2}{3}{\text{ (exact), }} – 0.667\)     A1     N3

[4 marks]

c.

evidence of integrating \(g'(x)\)     (M1)

eg\(\;\;\;g(x)|_2^a,{\text{ }}g(x)|_a^2\)

applying the fundamental theorem of calculus (seen anywhere)     R1

eg\(\;\;\;\int_2^a {g'(x) = g(a) – g(2)} \)

correct substitution into integral     (A1)

eg\(\;\;\;\ln 3 + g(a) – g(2),{\text{ }}\ln 3 + g(a) – \ln \left( {f(2)} \right)\)

\(\ln 3 + g(a) – \ln 3\)     A1

\(\ln 3 + \int_2^a {g'(x) = g(a)} \)     AG     N0

[4 marks]

d.

METHOD 1

substituting \(a = 5\) into the formula for \(g(a)\)     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x,{\text{ }}g(5) = \ln 3 + \int_2^5 {g'(x){\text{d}}x\;\;\;} } \left( {{\text{do not accept only }}g(5)} \right)\)

attempt to substitute areas     (M1)

eg\(\;\;\;\ln 3 + 0.66 – 0.21,{\text{ }}\ln 3 + 0.66 + 0.21\)

correct working

eg\(\;\;\;g(5) = \ln 3 + ( – 0.66 + 0.21)\)     (A1)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 2

attempt to set up an equation for one shaded region     (M1)

eg\(\;\;\;\int_4^5 {g'(x){\text{d}}x = 0.21,{\text{ }}\int_2^4 {g'(x){\text{d}}x =  – 0.66,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } } \)

two correct equations     (A1)

eg\(\;\;\;g(5) – g(4) = 0.21,{\text{ }}g(2) – g(4) = 0.66\)

combining equations to eliminate \(g(4)\)   (M1)

eg\(\;\;\;g(5) – [\ln 3 – 0.66] = 0.21\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 3

attempt to set up a definite integral     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x =  – 0.66 + 0.21,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } \)

correct working     (A1)

eg\(\;\;\;g(5) – g(2) =  – 0.45\)

correct substitution     (A1)

eg\(\;\;\;g(5) – \ln 3 =  – 0.45\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

[4 marks]

Total [16 marks]

e.

Question

A particle P moves along a straight line. Its velocity \({v_{\text{P}}}{\text{ m}}\,{{\text{s}}^{ – 1}}\) after \(t\) seconds is given by \({v_{\text{P}}} = \sqrt t \sin \left( {\frac{\pi }{2}t} \right)\), for \(0 \leqslant t \leqslant 8\). The following diagram shows the graph of \({v_{\text{P}}}\).

M17/5/MATME/SP2/ENG/TZ1/07

Write down the first value of \(t\) at which P changes direction.

[1]
a.i.

Find the total distance travelled by P, for \(0 \leqslant t \leqslant 8\).

[2]
a.ii.

A second particle Q also moves along a straight line. Its velocity, \({v_{\text{Q}}}{\text{ m}}\,{{\text{s}}^{ – 1}}\) after \(t\) seconds is given by \({v_{\text{Q}}} = \sqrt t \) for \(0 \leqslant t \leqslant 8\). After \(k\) seconds Q has travelled the same total distance as P.

Find \(k\).

[4]
b.
Answer/Explanation

Markscheme

\(t = 2\)     A1     N1

[1 mark]

a.i.

substitution of limits or function into formula or correct sum     (A1)

eg\(\,\,\,\,\,\)\(\int_0^8 {\left| v \right|{\text{d}}t,{\text{ }}\int {\left| {{v_Q}} \right|{\text{d}}t,{\text{ }}\int_0^2 {v{\text{d}}t – \int_2^4 {v{\text{d}}t + \int_4^6 {v{\text{d}}t – \int_6^8 {v{\text{d}}t} } } } } } \)

9.64782

distance \( = 9.65{\text{ (metres)}}\)     A1     N2

[2 marks]

a.ii.

correct approach     (A1)

eg\(\,\,\,\,\,\)\(s = \int {\sqrt t ,{\text{ }}\int_0^k {\sqrt t } } {\text{d}}t,{\text{ }}\int_0^k {\left| {{v_{\text{Q}}}} \right|{\text{d}}t} \)

correct integration     (A1)

eg\(\,\,\,\,\,\)\(\int {\sqrt t  = \frac{2}{3}{t^{\frac{3}{2}}} + c,{\text{ }}\left[ {\frac{2}{3}{x^{\frac{3}{2}}}} \right]_0^k,{\text{ }}\frac{2}{3}{k^{\frac{3}{2}}}} \)

equating their expression to the distance travelled by their P     (M1)

eg\(\,\,\,\,\,\)\(\frac{2}{3}{k^{\frac{3}{2}}} = 9.65,{\text{ }}\int_0^k {\sqrt t {\text{d}}t = 9.65} \)

5.93855

5.94 (seconds)     A1     N3

[4 marks]

b.
Scroll to Top