IBDP Maths analysis and approaches Topic: SL 5.5 Anti-differentiation with a boundary condition to determine the constant of integration HL Paper 1

Question

a.Show that \(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\) for \(0 < \alpha  < \frac{\pi }{2}\).[1]

b.Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 < \alpha  < \frac{\pi }{2}} \).[4]

▶️Answer/Explanation

Markscheme

EITHER

use of a diagram and trig ratios

eg,

\(\tan \alpha  = \frac{O}{A} \Rightarrow \cot \alpha  = \frac{A}{O}\)

from diagram, \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{A}{O}\)     R1

OR

use of \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{{\sin \left( {\frac{\pi }{2} – \alpha } \right)}}{{\cos \left( {\frac{\pi }{2} – \alpha } \right)}} = \frac{{\cos \alpha }}{{\sin \alpha }}\)     R1

THEN

\(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\)     AG

[1 mark]

a.

\(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x}  = [\arctan x]_{\tan \alpha }^{\cot \alpha }\)     (A1)

Note:     Limits (or absence of such) may be ignored at this stage.

\( = \arctan (\cot \alpha ) – \arctan (\tan \alpha )\)     (M1)

\( = \frac{\pi }{2} – \alpha  – \alpha \)     (A1)

\( = \frac{\pi }{2} – 2\alpha \)     A1

[4 marks]

b.

Examiners report

This was generally well done.

a.

This was generally well done. Some weaker candidates tried to solve part (b) through use of a substitution, though the standard result \(\arctan x\) was well known. A small number used \(\arctan x + c\) and went on to obtain an incorrect final answer.

b.

Question

Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne – 2,{\text{ }}x \ne – 1\).

a.i.Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).[1]

a.ii.Factorize \({x^2} + 3x + 2\).[1]

b.Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.[5]

c.Show that \(\frac{1}{{x + 1}} – \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).[1]

d.Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).[4

e.Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).[2]

f.Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = – 1\) and \(x = 1\).[3]

▶️Answer/Explanation

Markscheme

\({x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} – \frac{1}{4}\)     A1

[1 mark]

a.i.

\({x^2} + 3x + 2 = (x + 2)(x + 1)\)     A1

[1 mark]

a.ii.

A1 for the shape

A1 for the equation \(y = 0\)

A1 for asymptotes \(x = – 2\) and \(x = – 1\)

A1 for coordinates \(\left( { – \frac{3}{2},{\text{ }} – 4} \right)\)

A1 \(y\)-intercept \(\left( {0,{\text{ }}\frac{1}{2}} \right)\)

[5 marks]

b.

\(\frac{1}{{x + 1}} – \frac{1}{{x + 2}} = \frac{{(x + 2) – (x + 1)}}{{(x + 1)(x + 2)}}\)     M1

\( = \frac{1}{{{x^2} + 3x + 2}}\)     AG

[1 mark]

c.

\(\int\limits_0^1 {\frac{1}{{x + 1}} – \frac{1}{{x + 2}}{\text{d}}x} \)

\( = \left[ {\ln (x + 1) – \ln (x + 2)} \right]_0^1\)     A1

\( = \ln 2 – \ln 3 – \ln 1 + \ln 2\)     M1

\( = \ln \left( {\frac{4}{3}} \right)\)     M1A1

\(\therefore p = \frac{4}{3}\)

[4 marks]

d.

symmetry about the \(y\)-axis     M1

correct shape     A1

Note:     Allow FT from part (b).

[2 marks]

e.

\(2\int_0^1 {f(x){\text{d}}x} \)     (M1)(A1)

\( = 2\ln \left( {\frac{4}{3}} \right)\)     A1

Note:     Do not award FT from part (e).

[3 marks]

f.

Examiners report

[N/A]

a.i.

[N/A]

a.ii.

[N/A]

b.

[N/A]

c.

[N/A]

d.

[N/A]

e.

[N/A]

f.

Question

Consider the functions \(f,\,\,g,\) defined for \(x \in \mathbb{R}\), given by \(f\left( x \right) = {{\text{e}}^{ – x}}\,{\text{sin}}\,x\) and \(g\left( x \right) = {{\text{e}}^{ – x}}\,{\text{cos}}\,x\).

a.i.Find \(f’\left( x \right)\).[2]

 

a.ii.Find \(g’\left( x \right)\).[1]

 

b.Hence, or otherwise, find \(\int\limits_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x} \).[4]

 
▶️Answer/Explanation

Markscheme

attempt at product rule      M1

\(f’\left( x \right) =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x + {{\text{e}}^{ – x}}\,{\text{cos}}\,x\)      A1

[2 marks]

a.i.

\(g’\left( x \right) =  – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – {{\text{e}}^{ – x}}\,{\text{sin}}\,x\)      A1

[1 mark]

a.ii.

METHOD 1

Attempt to add \(f’\left( x \right)\) and \(g’\left( x \right)\)      (M1)

\(f’\left( x \right) + g’\left( x \right) =  – 2{{\text{e}}^{ – x}}\,{\text{sin}}\,x\)    A1

\(\int\limits_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x}  = \left[ { – \frac{{{{\text{e}}^{ – x}}}}{2}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)} \right]_0^\pi \) (or equivalent)      A1

Note: Condone absence of limits.

\( = \frac{1}{2}\left( {1 + {{\text{e}}^{ – \pi }}} \right)\)    A1

METHOD 2

\(I = \int {{{\text{e}}^{ – x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\( =  – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – \int {{{\text{e}}^{ – x}}} \,{\text{cos}}\,x\,{\text{d}}x\) OR \( =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x + \int {{{\text{e}}^{ – x}}} \,{\text{cos}}\,x\,{\text{d}}x\)     M1A1

\( =  – {{\text{e}}^{ – x}}\,{\text{sin}}\,x – {{\text{e}}^{ – x}}\,{\text{cos}}\,x – \int {{{\text{e}}^{ – x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\(I = \frac{1}{2}{{\text{e}}^{ – x}}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)\)     A1

\(\int_0^\pi  {{{\text{e}}^{ – x}}\,{\text{sin}}\,x\,{\text{d}}x = \frac{1}{2}\left( {1 + {{\text{e}}^{ – \pi }}} \right)} \)    A1

[4 marks]

b.

Examiners report

[N/A]

a.i.

[N/A]

a.ii.

[N/A]

b.
Scroll to Top