IB DP Maths Topic 6.5 Anti-differentiation with a boundary condition to determine the constant term SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The acceleration,  \(a{\text{ m}}{{\text{s}}^{ – 2}}\), of a particle at time t seconds is given by \[a = \frac{1}{t} + 3\sin 2t {\text{, for }} t \ge 1.\]

The particle is at rest when \(t = 1\) .

Find the velocity of the particle when \(t = 5\) .

Answer/Explanation

Markscheme

evidence of integrating the acceleration function     (M1)

e.g. \(\int {\left( {\frac{1}{t} + 3\sin 2t} \right)} {\rm{d}}t\)

correct expression \(\ln t – \frac{3}{2}\cos 2t + c\)     A1A1

evidence of substituting (1, 0)     (M1)

e.g. \(0 = \ln 1 – \frac{3}{2}\cos 2 + c\)

\(c = – 0.624\) \(\left( { = \frac{3}{2}\cos 2 – \ln {\text{1 or }}\frac{{\rm{3}}}{{\rm{2}}}\cos 2} \right)\)     (A1)

\(v = \ln t – \frac{3}{2}\cos 2t – 0.624\) \(\left( { = \ln t – \frac{3}{2}\cos 2t + \frac{3}{2}\cos {\text{2 or ln}}t – \frac{3}{2}\cos 2t + \frac{3}{2}\cos 2 – \ln 1} \right)\)     (A1)

\(v(5) = 2.24\) (accept the exact answer \(\ln 5 – 1.5\cos 10 + 1.5\cos 2\) ) A1     N3

[7 marks]

Question

A gradient function is given by \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = 10{{\rm{e}}^{2x}} – 5\) . When \(x = 0\) , \(y = 8\) . Find the value of y when \(x = 1\) .

Answer/Explanation

Markscheme

METHOD 1

evidence of anti-differentiation     (M1)

e.g. \(\int {(10{{\rm{e}}^{2x}} – 5){\rm{d}}x} \)

\(y = 5{{\rm{e}}^{2x}} – 5x + C\)     A2A1

Note: Award A2 for \(5{{\rm{e}}^{2x}}\) , A1 for \( – 5x\) . If “C” is omitted, award no further marks.

substituting \((0{\text{, }}8)\)     (M1)

e.g. \(8 = 5 + C\)

\(C = 3\)  \((y = 5{{\rm{e}}^{2x}} – 5x + 3)\)     (A1)

substituting \(x = 1\)     (M1)

\(y = 34.9\)  \((5{{\rm{e}}^2} – 2)\)     A1     N4

METHOD 2

evidence of definite integral function expression     (M2)

e.g. \(\int_a^x {f'(t){\rm{d}}t = } f(x) – f(a)\) , \(\int_0^x {(10{{\rm{e}}^{2x}} – 5)} \)

initial condition in definite integral function expression     (A2)

e.g. \(\int_0^x {(10{{\rm{e}}^{2t}} – 5)} {\rm{d}}t = y – 8\) , \(\int_0^x {(10{{\rm{e}}^{2x}} – 5)} {\rm{d}}x + 8\)

correct definite integral expression for y when \(x = 1\)     (A2)

e.g. \(\int_0^1 {(10{{\rm{e}}^{2x}} – 5){\rm{d}}x + 8} \)

\(y = 34.9\)  \((5{{\rm{e}}^2} – 2)\)     A1     N4

[8 marks]

Scroll to Top