IB DP Maths Topic 6.5 Areas under curves (between the curve and the x-axis) SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {{\rm{e}}^x}\sin 2x + 10\) , for \(0 \le x \le 4\) . Part of the graph of f is given below.


There is an x-intercept at the point A, a local maximum point at M, where \(x = p\) and a local minimum point at N, where \(x = q\) .

Write down the x-coordinate of A.

[1]
a.

Find the value of

(i)     p ;

(ii)    q .

[2]
b(i) and (ii).

Find \(\int_p^q {f(x){\rm{d}}x} \) . Explain why this is not the area of the shaded region.

[3]
c.
Answer/Explanation

Markscheme

\(2.31\)     A1     N1

[1 mark]

a.

(i) 1.02     A1     N1

(ii) 2.59     A1     N1

[2 marks]

b(i) and (ii).

\(\int_p^q {f(x){\rm{d}}x} = 9.96\)     A1     N1

split into two regions, make the area below the x-axis positive     R1R1     N2

[3 marks]

c.

Question

Let \(f(x) = x\ln (4 – {x^2})\) , for \( – 2 < x < 2\) . The graph of f is shown below.


The graph of f crosses the x-axis at \(x = a\) , \(x = 0\) and \(x = b\) .

Find the value of a and of b .

[3]
a.

The graph of f has a maximum value when \(x = c\) .

Find the value of c .

[2]
b.

The region under the graph of f from \(x = 0\) to \(x = c\) is rotated \({360^ \circ }\) about the x-axis. Find the volume of the solid formed.

[3]
c.

Let R be the region enclosed by the curve, the x-axis and the line \(x = c\) , between \(x = a\) and \(x = c\) .

Find the area of R .

[4]
d.
Answer/Explanation

Markscheme

evidence of valid approach     (M1)

e.g. \(f(x) = 0\) , graph

\(a = – 1.73\) , \(b = 1.73\) \((a = – \sqrt 3 {\text{, }}b = \sqrt 3 )\)     A1A1     N3

[3 marks]

a.

attempt to find max     (M1)

e.g. setting \(f'(x) = 0\) , graph

\(c = 1.15\) (accept (1.15, 1.13))     A1     N2

[2 marks]

b.

attempt to substitute either limits or the function into formula     M1

e.g. \(V = \pi {\int_0^c {\left[ {f(x)} \right]} ^2}{\rm{d}}x\) , \(\pi {\int {\left[ {x\ln (4 – {x^2})} \right]} ^2}\) , \(\pi \int_0^{1.149 \ldots } {{y^2}{\rm{d}}x} \)

\(V = 2.16\)    A2     N2

[3 marks]

c.

valid approach recognizing 2 regions     (M1)

e.g. finding 2 areas

correct working     (A1)

e.g. \(\int_0^{ – 1.73 \ldots } {f(x){\rm{d}}x + } \int_0^{1.149 \ldots } {f(x){\rm{d}}x} \) , \( – \int_{ – 1.73 \ldots }^0 {f(x){\rm{d}}x + } \int_0^{1.149 \ldots } {f(x){\rm{d}}x} \)

area \( = 2.07\) (accept 2.06)     A2     N3

[4 marks]

d.

Question

Consider a function \(f\), for \(0 \le x \le 10\). The following diagram shows the graph of \(f’\), the derivative of \(f\).

The graph of \(f’\) passes through \((2,{\text{ }} – 2)\) and \((5,{\text{ }}1)\), and has \(x\)-intercepts at \(0\), \(4\) and \(6\).

The graph of \(f\) has a local maximum point when \(x = p\). State the value of \(p\), and justify your answer.

[3]
a.

Write down \(f'(2)\).

[1]
b.

Let \(g(x) = \ln \left( {f(x)} \right)\) and \(f(2) = 3\).

Find \(g'(2)\).

[4]
c.

Verify that \(\ln 3 + \int_2^a {g'(x){\text{d}}x = g(a)} \), where \(0 \le a \le 10\).

[4]
d.

The following diagram shows the graph of \(g’\), the derivative of \(g\).

The shaded region \(A\) is enclosed by the curve, the \(x\)-axis and the line \(x = 2\), and has area \({\text{0.66 unit}}{{\text{s}}^{\text{2}}}\).

The shaded region \(B\) is enclosed by the curve, the \(x\)-axis and the line \(x = 5\), and has area \({\text{0.21 unit}}{{\text{s}}^{\text{2}}}\).

Find \(g(5)\).

[4]
e.
Answer/Explanation

Markscheme

\(p = 6\)     A1     N1

recognizing that turning points occur when \(f'(x) = 0\)     R1     N1

eg\(\;\;\;\)correct sign diagram

\(f’\) changes from positive to negative at \(x = 6\)     R1     N1

[3 marks]

a.

\(f'(2) =  – 2\)     A1     N1

[1 mark]

b.

attempt to apply chain rule     (M1)

eg\(\;\;\;\ln (x)’ \times f'(x)\)

correct expression for \(g'(x)\)     (A1)

eg\(\;\;\;g'(x) = \frac{1}{{f(x)}} \times f'(x)\)

substituting \(x = 2\) into their \(g’\)     (M1)

eg\(\;\;\;\frac{{f'(2)}}{{f(2)}}\)

\( – 0.666667\)

\(g'(2) =  – \frac{2}{3}{\text{ (exact), }} – 0.667\)     A1     N3

[4 marks]

c.

evidence of integrating \(g'(x)\)     (M1)

eg\(\;\;\;g(x)|_2^a,{\text{ }}g(x)|_a^2\)

applying the fundamental theorem of calculus (seen anywhere)     R1

eg\(\;\;\;\int_2^a {g'(x) = g(a) – g(2)} \)

correct substitution into integral     (A1)

eg\(\;\;\;\ln 3 + g(a) – g(2),{\text{ }}\ln 3 + g(a) – \ln \left( {f(2)} \right)\)

\(\ln 3 + g(a) – \ln 3\)     A1

\(\ln 3 + \int_2^a {g'(x) = g(a)} \)     AG     N0

[4 marks]

d.

METHOD 1

substituting \(a = 5\) into the formula for \(g(a)\)     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x,{\text{ }}g(5) = \ln 3 + \int_2^5 {g'(x){\text{d}}x\;\;\;} } \left( {{\text{do not accept only }}g(5)} \right)\)

attempt to substitute areas     (M1)

eg\(\;\;\;\ln 3 + 0.66 – 0.21,{\text{ }}\ln 3 + 0.66 + 0.21\)

correct working

eg\(\;\;\;g(5) = \ln 3 + ( – 0.66 + 0.21)\)     (A1)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 2

attempt to set up an equation for one shaded region     (M1)

eg\(\;\;\;\int_4^5 {g'(x){\text{d}}x = 0.21,{\text{ }}\int_2^4 {g'(x){\text{d}}x =  – 0.66,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } } \)

two correct equations     (A1)

eg\(\;\;\;g(5) – g(4) = 0.21,{\text{ }}g(2) – g(4) = 0.66\)

combining equations to eliminate \(g(4)\)   (M1)

eg\(\;\;\;g(5) – [\ln 3 – 0.66] = 0.21\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 3

attempt to set up a definite integral     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x =  – 0.66 + 0.21,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } \)

correct working     (A1)

eg\(\;\;\;g(5) – g(2) =  – 0.45\)

correct substitution     (A1)

eg\(\;\;\;g(5) – \ln 3 =  – 0.45\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

[4 marks]

Total [16 marks]

e.

Question

A particle P starts from a point A and moves along a horizontal straight line. Its velocity \(v{\text{ cm}}\,{{\text{s}}^{ – 1}}\) after \(t\) seconds is given by

\[v(t) = \left\{ {\begin{array}{*{20}{l}} { – 2t + 2,}&{{\text{for }}0 \leqslant t \leqslant 1} \\ {3\sqrt t + \frac{4}{{{t^2}}} – 7,}&{{\text{for }}1 \leqslant t \leqslant 12} \end{array}} \right.\]

The following diagram shows the graph of \(v\).

N16/5/MATME/SP2/ENG/TZ0/09

P is at rest when \(t = 1\) and \(t = p\).

When \(t = q\), the acceleration of P is zero.

Find the initial velocity of \(P\).

[2]
a.

Find the value of \(p\).

[2]
b.

(i)     Find the value of \(q\).

(ii)     Hence, find the speed of P when \(t = q\).

[4]
c.

(i)     Find the total distance travelled by P between \(t = 1\) and \(t = p\).

(ii)     Hence or otherwise, find the displacement of P from A when \(t = p\).

[6]
d.
Answer/Explanation

Markscheme

valid attempt to substitute \(t = 0\) into the correct function     (M1)

eg\(\,\,\,\,\,\)\( – 2(0) + 2\)

2     A1     N2

[2 marks]

a.

recognizing \(v = 0\) when P is at rest     (M1)

5.21834

\(p = 5.22{\text{ }}({\text{seconds}})\)     A1     N2

[2 marks]

b.

(i)     recognizing that \(a = v’\)     (M1)

eg\(\,\,\,\,\,\)\(v’ = 0\), minimum on graph

1.95343

\(q = 1.95\)     A1     N2

(ii)     valid approach to find their minimum     (M1)

eg\(\,\,\,\,\,\)\(v(q),{\text{ }} – 1.75879\), reference to min on graph

1.75879

speed \( = 1.76{\text{ }}(c\,{\text{m}}\,{{\text{s}}^{ – 1}})\)     A1     N2

[4 marks]

c.

(i)     substitution of correct \(v(t)\) into distance formula,     (A1)

eg\(\,\,\,\,\,\)\(\int_1^p {\left| {3\sqrt t  + \frac{4}{{{t^2}}} – 7} \right|{\text{d}}t,{\text{ }}\left| {\int {3\sqrt t  + \frac{4}{{{t^2}}} – 7{\text{d}}t} } \right|} \)

4.45368

distance \( = 4.45{\text{ }}({\text{cm}})\)     A1     N2

(ii)     displacement from \(t = 1\) to \(t = p\) (seen anywhere)     (A1)

eg\(\,\,\,\,\,\)\( – 4.45368,{\text{ }}\int_1^p {\left( {3\sqrt t  + \frac{4}{{{t^2}}} – 7} \right){\text{d}}t} \)

displacement from \(t = 0\) to \(t = 1\)     (A1)

eg\(\,\,\,\,\,\)\(\int_0^1 {( – 2t + 2){\text{d}}t,{\text{ }}0.5 \times 1 \times 2,{\text{ 1}}} \)

valid approach to find displacement for \(0 \leqslant t \leqslant p\)     M1

eg\(\,\,\,\,\,\)\(\int_0^1 {( – 2t + 2){\text{d}}t + \int_1^p {\left( {3\sqrt t  + \frac{4}{{{t^2}}} – 7} \right){\text{d}}t,{\text{ }}\int_0^1 {( – 2t + 2){\text{d}}t – 4.45} } } \)

\( – 3.45368\)

displacement \( =  – 3.45{\text{ }}({\text{cm}})\)     A1     N2

[6 marks]

d.

Question

Let \(f(x) = 6 – \ln ({x^2} + 2)\), for \(x \in \mathbb{R}\). The graph of \(f\) passes through the point \((p,{\text{ }}4)\), where \(p > 0\).

Find the value of \(p\).

[2]
a.

The following diagram shows part of the graph of \(f\).

N17/5/MATME/SP2/ENG/TZ0/05.b

The region enclosed by the graph of \(f\), the \(x\)-axis and the lines \(x =  – p\) and \(x = p\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.

[3]
b.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(f(p) = 4\), intersection with \(y = 4,{\text{ }} \pm 2.32\)

2.32143

\(p = \sqrt {{{\text{e}}^2} – 2} \) (exact), 2.32     A1     N2

[2 marks]

a.

attempt to substitute either their limits or the function into volume formula (must involve \({f^2}\), accept reversed limits and absence of \(\pi \) and/or \({\text{d}}x\), but do not accept any other errors)     (M1)

eg\(\,\,\,\,\,\)\(\int_{ – 2.32}^{2.32} {{f^2},{\text{ }}\pi \int {{{\left( {6 – \ln ({x^2} + 2)} \right)}^2}{\text{d}}x,{\text{ 105.675}}} } \)

331.989

\({\text{volume}} = 332\)     A2     N3

[3 marks]

b.

Question

A particle P moves along a straight line. The velocity v m s−1 of P after t seconds is given by v (t) = 7 cos t − 5t cos t, for 0 ≤ t ≤ 7.

The following diagram shows the graph of v.

Find the initial velocity of P.

[2]
a.

Find the maximum speed of P.

[3]
b.

Write down the number of times that the acceleration of P is 0 m s−2 .

[3]
c.

Find the acceleration of P when it changes direction.

[4]
d.

Find the total distance travelled by P.

[3]
e.
Answer/Explanation

Markscheme

initial velocity when t = 0      (M1)

eg v(0)

v = 17 (m s−1)      A1 N2

[2 marks]

a.

recognizing maximum speed when \(\left| v \right|\) is greatest      (M1)

eg  minimum, maximum, v’ = 0

one correct coordinate for minimum      (A1)

eg  6.37896, −24.6571

24.7 (ms−1)     A1 N2

[3 marks]

b.

recognizing a = v ′     (M1)

eg  \(a = \frac{{{\text{d}}v}}{{{\text{d}}t}}\), correct derivative of first term

identifying when a = 0      (M1)

eg  turning points of v, t-intercepts of v 

3       A1 N3

[3 marks]

c.

recognizing P changes direction when = 0       (M1)

t = 0.863851      (A1)

−9.24689

a = −9.25 (ms−2)      A2 N3

[4 marks]

d.

correct substitution of limits or function into formula      (A1)
eg   \(\int_0^7 {\left| {\,v\,} \right|,\,\int_0^{0.8638} {v{\text{d}}t – \int_{0.8638}^7 {v{\text{d}}t} } ,\,\,\int {\left| {\,7\,{\text{cos}}\,x – 5{x^{{\text{cos}}\,x}}\,} \right|} \,dx,\,\,3.32 = 60.6} \)

63.8874

63.9 (metres)      A2 N3

[3 marks]

e.

Question

Let \(h(x) = \frac{{2x – 1}}{{x + 1}}\) , \(x \ne – 1\) .

Find \({h^{ – 1}}(x)\) .

[4]
a.

(i)     Sketch the graph of h for \( – 4 \le x \le 4\) and \( – 5 \le y \le 8\) , including any asymptotes.

(ii)    Write down the equations of the asymptotes.

(iii)   Write down the x-intercept of the graph of h .

[7]
b(i), (ii) and (iii).

Let R be the region in the first quadrant enclosed by the graph of h , the x-axis and the line \(x = 3\).

(i)     Find the area of R.

(ii)    Write down an expression for the volume obtained when R is revolved through \({360^ \circ }\) about the x-axis.

[5]
c(i) and (ii).
Answer/Explanation

Markscheme

\(y = \frac{{2x – 1}}{{x + 1}}\)

interchanging x and y (seen anywhere)     M1

e.g. \(x = \frac{{2y – 1}}{{y + 1}}\)

correct working     A1

e.g. \(xy + x = 2y – 1\)

collecting terms     A1

e.g. \(x + 1 = 2y – xy\) , \(x + 1 = y(2 – x)\)

\({h^{ – 1}}(x) = \frac{{x + 1}}{{2 – x}}\)     A1     N2

[4 marks]

a.


     A1A1A1A1     N4

Note: Award A1 for approximately correct intercepts, A1 for correct shape, A1 for asymptotes, A1 for approximately correct domain and range.

(ii) \(x = – 1\) , \(y = 2\)     A1A1     N2

(iii) \(\frac{1}{2}\)     A1     N1

[7 marks]

b(i), (ii) and (iii).

(i) \({\text{area}} = 2.06\)     A2     N2

(ii) attempt to substitute into volume formula (do not accept \(\pi \int_a^b {{y^2}{\rm{d}}x} \) )     M1

volume \( = \pi {\int_{\frac{1}{2}}^3 {\left( {\frac{{2x – 1}}{{x + 1}}} \right)} ^2}{\rm{d}}x\)     A2     N3

[5 marks]

c(i) and (ii).
Scroll to Top