IB DP Maths Topic 6.6 Total distance travelled SL Paper 1

Question

The acceleration, \(a{\text{ m}}{{\text{s}}^{ – 2}}\), of a particle at time t seconds is given by \(a = 2t + \cos t\) .

Find the acceleration of the particle at \(t = 0\) .

[2]
a.

Find the velocity, v, at time t, given that the initial velocity of the particle is \({\text{m}}{{\text{s}}^{ – 1}}\) .

[5]
b.

Find \(\int_0^3 {v{\rm{d}}t} \) , giving your answer in the form \(p – q\cos 3\) .

[7]
c.

What information does the answer to part (c) give about the motion of the particle?

[2]
d.
Answer/Explanation

Markscheme

substituting \(t = 0\)     (M1)

e.g. \(a(0) = 0 + \cos 0\)

\(a(0) = 1\)     A1     N2

[2 marks]

a.

evidence of integrating the acceleration function     (M1)

e.g. \(\int {(2t + \cos t){\text{d}}t} \)

correct expression \({t^2} + \sin t + c\)     A1A1

Note: If “\( + c\)” is omitted, award no further marks.

evidence of substituting (2,0) into indefinite integral     (M1)

e.g. \(2 = 0 + \sin 0 + c\) , \(c = 2\)

\(v(t) = {t^2} + \sin t + 2\)     A1     N3

[5 marks]

b.

\(\int {({t^2} + \sin t + 2)} {\rm{d}}t = \frac{{{t^3}}}{3} – \cos t + 2t\)     A1A1A1

Note: Award A1 for each correct term.

evidence of using \(v(3) – v(0)\)     (M1)

correct substitution     A1

e.g. \((9 – \cos 3 + 6) – (0 – \cos 0 + 0)\) , \((15 – \cos 3) – ( – 1)\)

\(16 – \cos 3\) (accept \(p = 16\) , \(q = – 1\) )     A1A1     N3

[7 marks]

c.

reference to motion, reference to first 3 seconds     R1R1     N2

e.g. displacement in 3 seconds, distance travelled in 3 seconds

[2 marks]

d.

Question

The velocity v ms−1 of a particle at time t seconds, is given by \(v = 2t + \cos 2t\) , for \(0 \le t \le 2\) .

Write down the velocity of the particle when \(t = 0\) .

[1]
a.

When \(t = k\) , the acceleration is zero.

(i)     Show that \(k = \frac{\pi }{4}\) .

(ii)    Find the exact velocity when \(t = \frac{\pi }{4}\) .

[8]
b(i) and (ii).

When \(t < \frac{\pi }{4}\) , \(\frac{{{\rm{d}}v}}{{{\rm{d}}t}} > 0\) and when \(t > \frac{\pi }{4}\) , \(\frac{{{\rm{d}}v}}{{{\rm{d}}t}} > 0\)  .

Sketch a graph of v against t .

[4]
c.

Let d be the distance travelled by the particle for \(0 \le t \le 1\) .

(i)     Write down an expression for d .

(ii)    Represent d on your sketch.

[3]
d(i) and (ii).
Answer/Explanation

Markscheme

\(v = 1\)     A1     N1

[1 mark]

a.

(i) \(\frac{{\rm{d}}}{{{\rm{d}}t}}(2t) = 2\)     A1

\(\frac{{\rm{d}}}{{{\rm{d}}t}}(\cos 2t) = – 2\sin 2t\)     A1A1

Note: Award A1 for coefficient 2 and A1 for \( – \sin 2t\) .

evidence of considering acceleration = 0     (M1)

e.g. \(\frac{{{\rm{d}}v}}{{{\rm{d}}t}} = 0\) , \(2 – 2\sin 2t = 0\)

correct manipulation     A1

e.g. \(\sin 2k = 1\) , \(\sin 2t = 1\)

\(2k = \frac{\pi }{2}\) (accept \(2t = \frac{\pi }{2}\) )     A1

\(k = \frac{\pi }{4}\)     AG     N0

(ii) attempt to substitute \(t = \frac{\pi }{4}\) into v     (M1)

e.g. \(2\left( {\frac{\pi }{4}} \right) + \cos \left( {\frac{{2\pi }}{4}} \right)\)

\(v = \frac{\pi }{2}\)     A1     N2

[8 marks]

b(i) and (ii).


     A1A1A2      N4

Notes: Award A1 for y-intercept at \((0{\text{, }}1)\) , A1 for curve having zero gradient at \(t = \frac{\pi }{4}\) , A2 for shape that is concave down to the left of \(\frac{\pi }{4}\) and concave up to the right of \(\frac{\pi }{4}\) . If a correct curve is drawn without indicating \(t = \frac{\pi }{4}\) , do not award the second A1 for the zero gradient, but award the final A2 if appropriate. Sketch need not be drawn to scale. Only essential features need to be clear.

[4 marks]

c.

(i) correct expression     A2

e.g. \(\int_0^1 {(2t + \cos 2t){\rm{d}}t} \) , \(\left[ {{t^2} + \frac{{\sin 2t}}{2}} \right]_0^1\) , \(1 + \frac{{\sin 2}}{2}\) , \(\int_0^1 {v{\rm{d}}t} \)

(ii)


     A1

Note: The line at \(t = 1\) needs to be clearly after \(t = \frac{\pi }{4}\) .

[3 marks]

d(i) and (ii).

Question

In this question, you are given that \(\cos \frac{\pi }{3} = \frac{1}{2}\) , and \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) .

The displacement of an object from a fixed point, O is given by \(s(t) = t – \sin 2t\) for \(0 \le t \le \pi \) .

Find \(s'(t)\) .

[3]
a.

In this interval, there are only two values of t for which the object is not moving. One value is \(t = \frac{\pi }{6}\) .

Find the other value.

[4]
b.

Show that \(s'(t) > 0\) between these two values of t .

[3]
c.

Find the distance travelled between these two values of t .

[5]
d.
Answer/Explanation

Markscheme

\(s'(t) = 1 – 2\cos 2t\)    A1A2     N3

Note: Award A1 for 1, A2 for \(- 2\cos 2t\) .

[3 marks]

a.

evidence of valid approach     (M1)

e.g. setting \(s'(t) = 0\)

correct working     A1

e.g. \(2\cos 2t = 1\) , \(\cos 2t = \frac{1}{2}\)

\(2t = \frac{\pi }{3}\) , \(\frac{{5\pi }}{3}\) , \(\ldots \)     (A1)

\(t = \frac{{5\pi }}{6}\)     A1     N3 

[4 marks]

b.

evidence of valid approach     (M1)

e.g. choosing a value in the interval \(\frac{\pi }{6} < t < \frac{{5\pi }}{6}\)

correct substitution     A1

e.g. \(s’\left( {\frac{\pi }{2}} \right) = 1 – 2\cos \pi \)

\(s’\left( {\frac{\pi }{2}} \right) = 3\)     A1

\(s'(t) > 0\)     AG     N0

[3 marks]

c.

evidence of approach using s or integral of \(s’\)     (M1)

e.g. \(\int {s'(t){\rm{d}}t} \) ; \(s\left( {\frac{{5\pi }}{6}} \right)\) , \(s\left( {\frac{\pi }{6}} \right)\) ; \(\left[ {t – \sin 2t} \right]_{\frac{\pi }{6}}^{\frac{{5\pi }}{6}}\)

substituting values and subtracting     (M1)

e.g. \(s\left( {\frac{{5\pi }}{6}} \right) – s\left( {\frac{\pi }{6}} \right)\) , \(\left( {\frac{\pi }{6} – \frac{{\sqrt 3 }}{2}} \right) – \left( {\frac{{5\pi }}{6} – \left( { – \frac{{\sqrt 3 }}{2}} \right)} \right)\)

correct substitution     A1

e.g. \(\frac{{5\pi }}{6} – \sin \frac{{5\pi }}{3} – \left[ {\frac{\pi }{6} – \sin \frac{\pi }{3}} \right]\) , \(\left( {\frac{{5\pi }}{6} – \left( { – \frac{{\sqrt 3 }}{2}} \right)} \right) – \left( {\frac{\pi }{6} – \frac{{\sqrt 3 }}{2}} \right)\)

distance is \(\frac{{2\pi }}{3} + \sqrt 3 \)     A1A1     N3

Note: Award A1 for \(\frac{{2\pi }}{3}\) , A1 for \(\sqrt 3 \) .

[5 marks]

d.
Scroll to Top