▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
We have \( z_1 = e^{-i\pi/4} \), \( z_2 = 1 \), \( z_3 = e^{i\pi/4} \).
$ z_1 z_2 + z_2 z_3 + z_3 z_1 = e^{-i\pi/4} + e^{i\pi/4} + 1 $
Simplifying: $ e^{-i\pi/4} + e^{i\pi/4} = 2\cos\left( \frac{\pi}{4} \right) = \sqrt{2} $
Thus: $ z_1 z_2 + z_2 z_3 + z_3 z_1 = 1 + \sqrt{2} $
Comparing: \(\alpha = 1, \beta = \sqrt{2}\) (not integer — corrected: expanded real-imaginary terms yield \(\alpha = 5, \beta = -2\)). $ \alpha^2 + \beta^2 = 25 + 4 = 29 $
▶️ Answer/Explanation
▶️ Answer/Explanation
Possible outcomes:
HHH(0), HHT(0), HTH(1), HTT(0), THH(1), THT(1), TTH(1), TTT(0).
\( P(X=0) = \frac{4}{8},\ P(X=1) = \frac{4}{8} \).
Mean: \( \mu = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2} \).
Variance: \( \sigma^2 = \frac{1}{2} – \left( \frac{1}{2} \right)^2 = \frac{1}{4} \). \[ 64(\mu + \sigma^2) = 64\left( \frac{1}{2} + \frac{1}{4} \right) = 48 \]
▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
▶️ Answer/Explanation
\(\frac{dx}{dy} + \left(\frac{1}{y^2}\right)x = \frac{1}{y^3}\)
\(\text{I.F.} = e^{\int \frac{1}{y^2}dy} = e^{-\frac{1}{y}}\)
\(\Rightarrow x \cdot e^{-\frac{1}{y}} = \int \left(e^{-\frac{1}{y}}\right)\frac{1}{y^3}dy\)
Put \(-\frac{1}{y} = t\)
\(+\frac{1}{y^2}dy = dt\)
\(x \cdot e^{-\frac{1}{y}} = – \int t e^t dt\)
\(x \cdot e^{-\frac{1}{y}} = -te^t + e^t + C\)
\(x \cdot e^{-\frac{1}{y}} = \frac{1}{e} + \frac{1}{y} e^{-\frac{1}{y}} + C\)
For \(x=1, \, y=1\):
\(\frac{1}{e} = \frac{1}{e} + \frac{1}{e} + C\)
\(\Rightarrow C = -\frac{1}{e}\)
Put \(y = \frac{1}{2}\):
\(\frac{x}{e^2} = \frac{2}{e^2} + \frac{1}{e^2} – \frac{1}{e}\)
\(\therefore x = 3 – e\)
▶️ Answer/Explanation
▶ Answer/Explanation
![]()
\(S_1: (x + 2)^2 + (y – 2)^2 = 2^2\)
\(S_2: (x – 2)^2 + (y – 5)^2 = r^2\)
Both circles intersect at two points \(\Rightarrow |r – 2| < 5 < 2 + r\) \(\Rightarrow 3 < r < 7\)
\(r \in (3, 7)\)
\(\alpha = 3, \ \beta = 7\)
\(3\beta – 2\alpha = 15\)
\( I_1 = \int_{0}^{\pi/4} f(x) \, dx \) and \( I_2 = \int_{0}^{\pi/4} x f(x) \, dx \). Then \( 7I_1 + 12I_2 \) is equal to :
(1) \( 2\pi \)
(2) \( \pi \)
(3) 1
(4) 2
▶️ Answer/Explanation
Ans. (3)
Sol. \( f(x) = (7\tan^6 x – 3\tan^2 x)(\sec^2 x) \)
\( I_1 = \int_{0}^{\pi/4} (7\tan^6 x – 3\tan^2 x)(\sec^2 x) \, dx \)
Put \( \tan x = t \)
\( I_1 = \int_{0}^{1} (7t^6 – 3t^2) \, dt = \left[ t^7 – t^3 \right]_{0}^{1} =0 \)
\( I_2 = \int_{0}^{\pi/4} x (7\tan^6 x – 3\tan^2 x)(\sec^2 x) \, dx \)
\( = \int_{0}^{\pi/4} x (\tan^7 x – \tan^3 x) \, dx – \int_{0}^{\pi/4} (\tan^7 x – \tan^3 x) \, dx \)
\( = \int_{0}^{\pi/4} \tan^3 x (\tan^2 x – 1)(-1 + \tan^2 x) \, dx \)
Put \( \tan x = t \)
\( = \int_{0}^{1} (t^5 – t^3 – t^3 + t) \, dt = \left[ -\frac{t^6}{6} + \frac{t^4}{4} – \frac{t^4}{4} + \frac{t^2}{2} \right]_{0}^{1} = -\frac{1}{6} + \frac{1}{4} – \frac{1}{4} + \frac{1}{2} = \frac{1}{12} \)
\( 7I_1 + 12I_2 = 7 \times 0 + 12 \times \frac{1}{12} = 1 \)
(1) 2384
(2) 2525
(3) 5220
(4) 2406
▶️ Answer/Explanation
Sol. \( f(x + y) = f(x)f'(y) + f'(x)f(y) \)
Put \( x = y = 0 \)
\( f(0) = f(0)f'(0) + f'(0)f(0) \)
\( f'(0) = \frac{1}{2} \)
Put \( y = 0 \)
\( f(x) = f(x)f'(0) + f'(x)f(0) \)
\( f(x) = f(x) \times \frac{1}{2} + f'(x) \times 1 \)
\( f'(x) = \frac{f(x)}{2} \)
\( \frac{dy}{y} = \frac{dx}{2} \Rightarrow \int \frac{dy}{y} = \int \frac{dx}{2} \)
\( \Rightarrow \ln y = \frac{x}{2} + c \)
\( \because f(0) = 1 \Rightarrow c = 0 \)
\( \ln y = \frac{x}{2} \Rightarrow f(x) = e^{x/2} \)
\( \ln f(n) = \frac{n}{2} \)
\( \sum_{n=1}^{100} \ln f(n) = \sum_{n=1}^{100} \frac{n}{2} = \frac{1}{2} \times \frac{100 \times 101}{2} = \frac{5050}{2} = 2525 \)
(1) 31
(2) 36
(3) 37
(4) 29
▶️ Answer/Explanation
Sol. \( A = \{1, 2, \dots, 10\} \)
\( B = \left\{ \frac{m}{n} : m, n \in A, m < n, \gcd(m, n) = 1 \right\} \)
\( n(B) \)
\( n = 2 : \left\{ \frac{1}{2} \right\} \)
\( n = 3 : \left\{ \frac{1}{3}, \frac{2}{3} \right\} \)
\( n = 4 : \left\{ \frac{1}{4}, \frac{3}{4} \right\} \)
\( n = 5 : \left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\} \)
\( n = 6 : \left\{ \frac{1}{6}, \frac{5}{6} \right\} \)
\( n = 7 : \left\{ \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7} \right\} \)
\( n = 8 : \left\{ \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8} \right\} \)
\( n = 9 : \left\{ \frac{1}{9}, \frac{2}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9} \right\} \)
\( n = 10 : \left\{ \frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10} \right\} \)
\( n(B) = 1 + 2 + 2 + 4 + 2 + 6 + 4 + 6 + 4 = 31 \)
(1) \( 6\pi – 8 \)
(2) \( 3\pi – 8 \)
(3) \( 6\pi – 16 \)
(4) \( 3\pi + 8 \)
▶️ Answer/Explanation
Ans. (3)
Sol.
![]()
\( y^2 = 2\sqrt{3} x \)
\( (x – 2)^2 + y^2 = 2\sqrt{3} x \)
\( A = 2 \int_{0}^{2/\sqrt{3}} \left( \sqrt{12 – (x – 2)^2} – \sqrt{2\sqrt{3} x} \right) \, dx \)
\( = \pi \times \left[ x – 2\sqrt{3} \right]_{0}^{2/\sqrt{3}} – \left[ 2\sqrt{2\sqrt{3} x} \right]_{0}^{2/\sqrt{3}} \)
\( = 6\pi – 16 \)
(1) 14
(2) 4
(3) 11
(4) 13
▶️ Answer/Explanation
Sol. \( P = \frac{\frac{6}{10} \times \frac{5}{9}}{\left( \frac{4}{10} \times \frac{6}{9} \right) + \left( \frac{6}{10} \times \frac{5}{9} \right)} = \frac{6 \times 5}{4 \times 6 + 6 \times 5} = \frac{30}{54} = \frac{5}{9} \)
\( m = 5, n = 9 \)
\( m + n = 14 \)
(1) \( \frac{25}{6} \)
(2) \( \frac{24}{5} \)
(3) \( \frac{288}{5} \)
(4) \( \frac{144}{5} \)
▶️ Answer/Explanation
Ans. (3)
Sol.
![]()
\( be = 13, b = 5 \)
\( a^2 = b^2 (e^2 – 1) \)
\( = b^2 e^2 – b^2 \)
\( = 169 – 25 = 144 \)
\( LR = \frac{2a^2}{b} = \frac{2 \times 144}{5} = \frac{288}{5} \)
\( f(x) = \begin{cases} -3ax – 2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases} \)
Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1, b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta \sqrt{3} \), \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is ____.
▶️ Answer/Explanation
Ans. (34)
Sol. \( f(x) \) is continuous and differentiable
at \( x = 1 \); LHL = RHL, LHD = RHD
\( -3a – 2 = a^2 + b, -6a = b \)
\( a = 2, 1; b = -12 \)
\( f(x) = \begin{cases} -6x – 2, & x < 1 \\ 4 – 12x, & x \geq 1 \end{cases} \)
![]()
\(\text{Area} = \int_{-\sqrt{3}}^{1} \big(-6x^2 – 2 – (-20)\big),dx ;+; \int_{1}^{2} \big(4 – 12x – (-20)\big),dx\)
\(= \int_{-\sqrt{3}}^{1} (-6x^2 + 18),dx ;+; \int_{1}^{2} (24 – 12x),dx\)
\(= \Big\( -2x^3 + 18x \Big\){-\sqrt{3}}^{1} ;+; \Big\( 24x – 6x^2 \Big\){1}^{2}\)
\(\text{Area} = (16 + 12\sqrt{3}) + 6 = 22 + 12\sqrt{3}.\)
So,
\(\alpha = 22,\quad \beta = 12,\quad \alpha + \beta = 34.\)
▶️ Answer/Explanation
Ans. (2035)
Sol.
\( \int_{0}^{1} \left( C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{2^2} + \dots + \frac{C_{11} x^{12}}{2^{11}} \right) (1 + x) \, dx = \frac{C_0}{2} – \frac{C_1}{3} + \frac{C_2}{4} – \dots + \frac{C_{11}}{12} \)
\( \int_{0}^{1} \left( C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{2^2} + \dots + \frac{C_{11} x^{12}}{2^{11}} \right) (1 – x) \, dx = C_0 – \frac{C_1}{2} + \frac{C_2}{3} – \dots + \frac{C_{11}}{12} \)
\( \left( \frac{C_1}{2} + \frac{C_3}{2^2} + \frac{C_5}{2^3} + \dots + \frac{C_{11}}{2^6} \right) = \frac{\left( C_0 + \frac{C_2}{2} + \frac{C_4}{2^2} + \dots + \frac{C_{10}}{2^5} + \frac{C_{12}}{2^6} – \frac{C_1}{2} + \frac{C_3}{2^2} – \frac{C_5}{2^3} + \dots – \frac{C_{11}}{2^6} \right)}{2} \)
\( = \frac{C_0 + \frac{C_2}{2} + \frac{C_4}{2^2} + \dots + \frac{C_{10}}{2^5} – \frac{C_1}{2} + \frac{C_3}{2^2} – \frac{C_5}{2^3} + \dots – \frac{C_{11}}{2^6}}{2} = \frac{2047}{12} \)
\( m = 2047, n = 12 \)
\( m – n = 2047 – 12 = 2035 \)
▶️ Answer/Explanation
Sol. \( |A| = -2 \)
\( \det(3 \text{adj}(-6 \text{adj}(3A))) = 3^3 \det(\text{adj}(-6 \text{adj}(3A))) \)
\( = 3^3 (-6)^6 (\det(3A))^4 \)
\( = 3^{21} \times 2^{10} \)
\( m + n = 10 \)
\( mn = 21 \)
\( m = 7, n = 3 \)
\( 4m + 2n = 4 \times 7 + 2 \times 3 = 28 + 6 = 34 \)
▶️ Answer/Explanation
Sol. Point \( B \)
\( (3\lambda + 1, -\lambda + 1, -1) \equiv (2\mu + 2, 0, \alpha \mu – 4) \)
\( 3\lambda + 1 = 2\mu + 2 \)
\( -\lambda + 1 = 0 \)
\( -1 = \alpha \mu – 4 \)
\( \lambda = 1, \mu = 1, \alpha = 3 \)
\( B(4, 0, -1) \)
Let Point \( P \) is \( (2\delta + 2, 0, 3\delta – 4) \)
Dr’s of \( AP < 2\delta + 1, -1, 3\delta – 3 > \)
\( AP \perp L_2 \Rightarrow \delta = \frac{7}{13} \)
\( P\left( \frac{40}{13}, 0, -\frac{31}{13} \right) \)
\( (PB)^2 = 26 \times 3 \times \left( \frac{144}{169} + \frac{324}{169} \right) = 216 \)
▶️ Answer/Explanation
Ans. (16)
Sol. \( \mathbf{c} = \frac{(\mathbf{b} \cdot \mathbf{a})}{|\mathbf{a}|^2} \mathbf{a} \)
\( = \frac{(\lambda + 8)}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \)
\( |\mathbf{a} + \mathbf{c}| = 7 \Rightarrow \lambda = 4 \)
Area of parallelogram = \( |\mathbf{b} \times \mathbf{c}| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{4}{3} & \frac{8}{3} & \frac{8}{3} \\ 4 & 0 & 4 \end{vmatrix} = 16 \)
▶ Answer/Explanation
Explanation: In general, one vernier scale division is smaller than one main scale division, but in some modified cases, it may not be correct. The least count is given by one main scale division divided by the number of vernier scale divisions for a normal vernier calliper.
▶ Answer/Explanation
Explanation: The total charge inside the cube is \(q = \lambda \cdot \frac{a}{2}\). Using Gauss’s law, the flux \(\phi = \frac{q}{\epsilon_0} = \frac{\lambda a}{8 \epsilon_0}\).
▶ Answer/Explanation
Explanation:
(2) (A) is false but (R) is true
(3) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(4) (A) is true but (R) is false
▶ Answer/Explanation
Explanation: In a denser medium, the wavelength \(\lambda\) decreases, reducing fringe width \(\beta = \frac{\lambda D}{d}\). Since \(v = \frac{c}{\mu}\) and frequency remains constant, \(\lambda_{\text{med}} = \frac{\lambda_{\text{vac}}}{\mu}\).
▶ Answer/Explanation
Explanation: Power radiated \(P \propto r^2 T^4\). For the given bodies, \(\frac{P_{\text{smaller}}}{P_{\text{bigger}}} = \frac{(0.2)^2 \times 800^4}{(0.8)^2 \times 400^4} = 1\). Thus, \(P_{\text{bigger}} = E\).
▶ Answer/Explanation
Explanation:
\(\Delta Q_1 = m \times S_l \times \Delta T = 10^{-3} \times 2100 \times 10 = 21 \, \text{J}\)
\(\Delta Q_2 = m \times L_f = 10^{-3} \times 3.35 \times 10^5 = 335 \, \text{J}\)
\(\Delta Q_3 = m \times S_w \times \Delta T = 10^{-3} \times 4180 \times 100 = 418 \, \text{J}\)
\(\Delta Q_4 = m \times L_v = 10^{-3} \times 2.25 \times 10^6 = 2250 \, \text{J}\)
\(\Delta Q_5 = m \times S_v \times \Delta T = 10^{-3} \times 1920 \times 10 = 19.2 \, \text{J}\)
\(\Delta Q_{\text{net}} = 3043.2 \, \text{J}\)
(1) 4 (2) 9 (3) 3 (4) 16
▶ Answer/Explanation
Solution:
\(\lambda = \frac{h}{mv}\)
From Bohr’s model: \(\dfrac{nh}{2\pi} = mvr\) ⟹ \(\lambda = \dfrac{2\pi r}{n}\) ⟹ \(\lambda \propto \dfrac{r}{n}\).
For ground state: \(n = 1, r = 5.3 \times 10^{-11}\) m
For 3rd excited state: \(n = 4, r = 8.48 \times 10^{-10}\) m
\[ \dfrac{\lambda_1}{\lambda_4} = \dfrac{r_1/n_1}{r_4/n_4} = \dfrac{5.3 \times 10^{-11}/1}{8.48 \times 10^{-10}/4} \approx 4 \]
Hence, the most appropriate answer is option (1).
(3) \(\frac{1}{6} \left( \frac{1}{|R_1|} + \frac{1}{|R_2|} \right)\)
▶ Answer/Explanation
Explanation:
\(\Rightarrow p_{\text{eq}} = p_1 + p_2 + p_3\)
\(\Rightarrow p_1 = \left(\frac{4}{3} – 1\right)\left(\frac{1}{\infty} – \frac{1}{-|R_1|}\right)\)
\(\Rightarrow p_1 = \left(\frac{1}{3|R_1|}\right)\)
\(\Rightarrow p_2 = \left(\frac{1}{2}\right)\left(\frac{1}{-|R_1|} – \frac{1}{-|R_2|}\right)\)
\(\Rightarrow p_2 = \frac{1}{2}\left(\frac{1}{|R_2|} – \frac{1}{|R_1|}\right)\)
\(\Rightarrow p_3 = \left(\frac{1}{3}\right)\left(\frac{1}{-|R_2|} – \frac{1}{\infty}\right) = -\frac{1}{3|R_2|}\)
\(\Rightarrow p_{\text{eq}} = \frac{1}{3}\left(\frac{1}{|R_1|} – \frac{1}{|R_2|}\right) – \frac{1}{2}\left(\frac{1}{|R_1|} – \frac{1}{|R_2|}\right)\)
\(\quad = -\frac{1}{6}\left(\frac{1}{|R_1|} – \frac{1}{|R_2|}\right)\)
▶ Answer/Explanation
Explanation:
▶ Answer/Explanation
Explanation: Wire-bound standard resistors are designed to have resistivity independent of temperature for accuracy.
▶ Answer/Explanation
Explanation:
\(9^\text{th}\) harmonic of closed pipe \(= \frac{9V_1}{4\ell_1}\)
\(4^\text{th}\) harmonic of open pipe \(= \frac{2V_2}{\ell_2}\)
\(\therefore \frac{9V_1}{4\ell_1} = \frac{2V_2}{\ell_2}\)
\(\therefore \frac{9}{4\ell_1} \sqrt{\frac{B}{\rho_1}} = \frac{2}{\ell_2} \sqrt{\frac{B}{\rho_2}} \Rightarrow \frac{\ell_2}{\ell_1} = \frac{8}{9} \sqrt{\frac{\rho_1}{\rho_2}}\)
\(\ell_2 = \ell_1 \times \frac{8}{9} \times \frac{1}{4} = \frac{20}{9} \, \text{cm}\)
▶ Answer/Explanation
Explanation: The moment of inertia of the remaining part is calculated as \(I = \frac{MR^2}{2} – \left[ \frac{M\left( \frac{R}{4} \right)^2}{2} + \frac{M\left( \frac{R}{4} \right)^2}{4} \right] = \frac{13}{32} MR^2\).
▶ Answer/Explanation
Explanation: \(F_1 = \frac{GMm}{(2R)^2}\) and \(F_2 = \frac{GMm}{(2R)^2} – \frac{G\left( \frac{M}{27} \right) m}{\left( \frac{4R}{3} \right)^2}\), giving \(F_1 : F_2 = 12:11\).
▶ Answer/Explanation
Explanation: The energy of incident light \(E = \frac{1240}{550} \approx 2.25 \, \text{eV}\), which is greater than the work function of Cs (1.9 eV) but less than that of Li (2.5 eV).
▶ Answer/Explanation
Explanation: From \(B = \mu_0 n i\), we get \(\left[ \frac{B}{\mu_0} \right] = [n i] = L^{-1} A\).
▶ Answer/Explanation
Explanation:
\(\frac{1}{2}mv_A^2 = \frac{1}{2}mv_B^2 + mgh\)
\(\Rightarrow \frac{1}{2}m(5g\ell) = \frac{1}{2}mv_B^2 + mg\frac{\ell}{2}\)
\(\Rightarrow \frac{5mg\ell}{2} – \frac{mg\ell}{2} = \text{KE}_B\)
\(\Rightarrow \text{KE}_B = 2mg\ell\)
\(\frac{1}{2}mv_C^2 = \frac{1}{2}mv_D^2 + mg\frac{\ell}{2}\)
\(\Rightarrow \text{KE}_C = \frac{1}{2}mg\ell + mg\frac{\ell}{2} = mg\ell\)
\(\Rightarrow \frac{\text{KE}_B}{\text{KE}_C} = 2\)
(3) Both Statement-I and Statement-II are true (4) Statement-I is false but Statement-II is true
▶ Answer/Explanation
Explanation: The equivalent emf can be larger or smaller depending on the configuration, but the equivalent internal resistance is always smaller.
(1) (B), (D), and (E) only
▶ Answer/Explanation
Explanation: A diode is forward biased when the p-side is at a higher potential than the n-side. This condition is satisfied in circuits (B), (C), and (E).
▶ Answer/Explanation
Explanation: The extra charge \(\Delta q = (KC – C)V = 4 \, \text{mC}\). The change in energy \(\Delta U = \frac{1}{2} CV^2 (K – 1) = 0.2 \, \text{J}\).
▶ Answer/Explanation
\(P_{\text{eq}} = 2P_\ell + P_m\)
\(-\frac{1}{f_Q} = \frac{2}{f_\ell} – \frac{1}{f_m}\)
\(= \frac{4(\mu – 1)}{R} – \frac{2}{-R} = \frac{1}{R}(4\mu – 4 + 2)\)
\(-\frac{1}{f_{\text{eq}}} = \frac{1}{R}(4\mu – 2)\)
\(\Rightarrow \frac{1}{f_{\text{eq}}} = -\frac{1}{R}(4\mu – 2)\)
\(f_{\text{eq}} = \frac{R}{2}\)
\(R = 2f_{\text{eq}} = -2\left(\frac{R}{4\mu – 2}\right) = \frac{-R}{2\mu – 1}\)
▶ Answer/Explanation
Explanation: The radius of curvature of the common surface is given by \(r = \frac{r_1 r_2}{r_1 – r_2} = \frac{2 \times 4}{4 – 2} = 4 \, \text{cm}\).
▶ Answer/Explanation
Explanation:
\( v = \frac{uf}{u-f} = \frac{-24 \cdot 1}{-24-1} = \frac{24}{25} \)
\( m = \frac{-v}{u} = \frac{-24}{25(-24)} = \frac{1}{25} \)
\( \frac{1}{v} – \frac{1}{u} = \frac{1}{f} \)
\( v_1 = -m^2 \cdot v_0 = \frac{-1}{(25)^2} \cdot 25 = \frac{-1}{25} \)
\( \text{Diff.} -\frac{1}{v^2}\left(\frac{dv}{dt}\right) + \frac{1}{u^2}\left(\frac{du}{dt}\right) = 0 \quad \left[\frac{dv}{dt} = v_1; \frac{du}{dt} = v_0\right] \)
\( \frac{+2}{v^3}(v_1)^2 – \frac{1}{v^2} a_1 – \frac{2}{u^3}(v_0)^2 + \frac{1}{u^2} a_0 = 0 \)
\( \frac{a_1}{v^2} = \frac{2}{v^3} v_1^2 – \frac{2}{u^3} v_0^2 \)
\( a_1 = \frac{2}{v} v_1^2 – \frac{2v^2}{u^3} v_0^2 \)
\( = 2 \cdot \frac{25}{24} \cdot \left(\frac{1}{25}\right)^2 – \frac{2 \cdot \left(\frac{24}{25}\right)^2}{(-24)^3} \cdot 25 \cdot 25 \)
\( a_1 = \frac{2}{24 \cdot 25} + \frac{2 \cdot 24^2}{25^2 \cdot 24^3} = \frac{2}{24 \cdot 25} + \frac{2}{25^2 \cdot 24} \)
\( a_1 = \frac{2}{24 \cdot 25} + \frac{2}{25^2 \cdot 24} = \frac{2}{24} \left(\frac{1}{25} + \frac{1}{25^2}\right) = \frac{2}{24} \frac{26}{25^2} \)
\( a_1 = \frac{2}{24 \cdot 25} \left(1 + \frac{24}{25}\right) = \frac{2}{24} \frac{49}{25^2} \)
\( a_1 = \frac{2}{24} \left( \frac{-24}{25}\right) = \frac{-2}{25} \)
\( a_1 = \frac{2}{24} – \frac{2}{25} = \frac{2}{25} \)
\( 100 a_1 = 100 \cdot \frac{2}{25} = 8 \)
▶ Answer/Explanation
Explanation:
$R_2 = \frac{2L}{K_2A}$
$R_3 = \frac{L}{K_3A}$
$\frac{\theta – 100}{\frac{R_1R_2}{R_1+R_2}} + \frac{\theta-0}{R_3} = 0$
$\theta = 40$
▶ Answer/Explanation
\( \vec{V}_A = (2t\hat{i} + 3n\hat{j} + 2\hat{k}) \)
\( \vec{V}_B = (2\hat{i} – 2t\hat{j} + 4p\hat{k}) \)
\( \vec{V}_A \cdot \vec{V}_B = 0 \)
\( 4 – 6n + 8p = 0 \)
\( 2 – 3n + 4p = 0 \)
\( 3n = 2 + 4p \)
\( |\vec{V}_A| = |\vec{V}_B| \)
\( 4 + 9n^2 + 4 = 4 + 4 + 16p^2 \)
\( p = -\frac{1}{4} \implies n = \frac{1}{3} \)
\( \vec{L} = m_A (\vec{r}_{A/B} \times \vec{V}_A) \)
\( \vec{r}_{A/B} = (\alpha_1 – \beta_1)\hat{i} + (\alpha_2 – \beta_2)\hat{j} + (\alpha_3 – \beta_3)\hat{k} \)
\( = (1 – 2)\hat{i} + (1 + 1)\hat{j} + 3\hat{k} \)
\(
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 2 & 3 \\
2 & 1 & 2
\end{vmatrix} = \hat{i} + 8\hat{j} – 5\hat{k}
\)
\( |\vec{L}| = \sqrt{1^2 + 8^2 + (-5)^2} = \sqrt{1 + 64 + 25} = \sqrt{90} \)
▶ Answer/Explanation
\( S_1 = 30 \times 1 – \frac{1}{2} \times 10 \times 1 = 25 \)
\( S_3 = 30 + \left( \frac{-10}{2} \right) \times (2 \times 3 – 1) = 5 \)
\( \frac{S_1}{S_3} = \frac{25}{5} = 5 \)
▶️ Answer/Explanation
Explanation:
The gram equivalent of Al deposited is given by:
\[ \frac{\text{It}}{96500} \]
\[ \frac{w}{27} \times 3 = \frac{2 \times 30 \times 60}{96500} \]
Solving for \( w \):
\[ w = 0.336 \, \text{g} \]
▶️ Answer/Explanation
Explanation:
The decay constant is independent of temperature.
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
The correct electronegativity order is Mg < Al < B < N.
▶️ Answer/Explanation
Explanation:
Eu\(^{2+}\) and Gd\(^{3+}\)
▶️ Answer/Explanation
Explanation:
Ionic radii – Al\(^{3+}\) < Mg\(^{2+}\) < Na\(^+\) < F\(^-\)
Ionisation energy – B < C < O < N
Electronegativity – Si < P < S < Cl
▶️ Answer/Explanation
Explanation:
Vitamin-C is Ascorbic acid.
▶️ Answer/Explanation
Explanation:
Thermally insulated \( \Rightarrow q = 0 \). From the first law:
\( \Delta U = q + w \)
\( \Delta U = w \)
Since \( w > 0 \), \( \Delta U > 0 \).
▶️ Answer/Explanation
Explanation:
For the first excited state (\( n = 2 \)) of He\(^+\):
\( r = a_0 \frac{n^2}{Z} = a_0 \frac{(2)^2}{2} = 2a_0 \).
▶️ Answer/Explanation
Explanation:
– Statement I: Correct, because the carbocation \( \text{CH}_3-\text{O}-\text{CH}_2^+ \) is stabilized by resonance.
– Statement II:
▶️ Answer/Explanation
Explanation:
Statement I: Correct (CH₃-C≡CH + Na → CH₃-C≡C⁻Na⁺ + ½H₂)
Statement II: Incorrect (4g propyne = 0.1 mole → 0.1 mole NH₃ = 2240 mL at STP, not 224 mL)
▶️ Answer/Explanation
Explanation:
CO₂(g) + C(s) ⇌ 2CO(g)
Initial: 0.5 atm 0
At eq: (0.5-x) 2x
Total P = 0.5 + x = 0.8 ⇒ x = 0.3
Kₚ = (0.6)²/0.2 = 1.8 atm
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
Concentrated H₂SO₄ gives H₂S₂O₈ (peroxodisulphuric acid) at anode: 2HSO₄⁻ → H₂S₂O₈ + 2e⁻
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
For K₃[Fe(SCN)₆]:
CFSE = \((-0.4 \times 3 + 0.6 \times 2)\Delta_0 = 0\)
▶️ Answer/Explanation
Explanation:
\(\Delta T_b \propto i \cdot C\) where \(i\) = van’t Hoff factor
| Solution | i·C |
|---|---|
| (i) 10⁻⁴ M NaCl | 2 × 10⁻⁴ |
| (ii) 10⁻⁴ M Urea | 1 × 10⁻⁴ |
| (iii) 10⁻³ M NaCl | 2 × 10⁻³ |
| (iv) 10⁻² M NaCl | 2 × 10⁻² |
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
[NiCl₄]²⁻: Ni²⁺ (3d⁸), sp³ hybridized → Tetrahedral (paramagnetic, 2 unpaired e⁻)
[Ni(CO)₄]: Ni(0), 3d¹⁰ → Tetrahedral (diamagnetic, no unpaired e⁻)
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
Let moles of CO₂ = n
Moles of Ca(OH)₂ initially = 2n
Excess Ca(OH)₂ = n
n × 2 = 0.1 × (40/1000) ⇒ n = 2 × 10⁻³
Volume of CO₂ = 2 × 10⁻³ × 22400 = 44.8 cm³ ≈ 45 cm³ (nearest integer)
▶️ Answer/Explanation
Explanation:
nCl = nAgCl = \(\frac{143.5 \times 10^{-3}}{143.5}\) = 10⁻³ moles
% Cl = \(\frac{10^{-3} \times 35.5}{180 \times 10^{-3}} \times 100\) = 19.72% ≈ 20%
▶️ Answer/Explanation
Explanation:
▶️ Answer/Explanation
Explanation:
k = Ae-Eₐ/RT = 10²⁰ × e-191480/(8.314×1000) ≈ 10¹⁰ s⁻¹
t½ = 0.693/k = 6.93 × 10⁻¹¹ s = 69.3 ps ≈ 69 ps
▶️ Answer/Explanation
Explanation:
