Style Switcher
Theme Colors
Theme Skins

Layout Styles

Theme Types and Versions

#### UNIT:1 Sets,Relations & Functions

• Sets and their representation.
• Union, intersection, and complement of sets and their algebraic properties.
• Power set.
• Relation, Types of relations, equivalence relations.
• Functions; one-one, into and onto functions, the composition of functions.

#### UNIT:2 Complex Numbers & Quadratic Equations

• Complex numbers as ordered pairs of reals.
• Representation of complex numbers in the form (a+ib) and their representation in a plane, Argand diagram.
• Algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number.
• Triangle inequality.
• Quadratic equations in real and complex number system and their solutions.
• The relation between roots and coefficients, nature of roots, the formation of quadratic equations with given roots.

#### UNIT:3 Matrices & Determinants

• Matrices: Algebra of matrices, types of matrices, and matrices of order two and three
• Determinants: Properties of determinants, evaluation of determinants, the area of triangles using determinants
• Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations.
• Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

#### UNIT:4 Permutations & Combinations

• The fundamental principle of counting.
• Permutation as an arrangement and combination as selection
• The meaning of P (n,r) and C (n,r). Simple applications.

#### UNIT:5 Mathematical Induction

• The principle of Mathematical Induction and its simple applications.

#### UNIT:6 Binomial Theorem

• Binomial theorem for a positive integral index.
• General term and middle term.
• Properties of Binomial coefficients and simple applications.

#### UNIT:7 Sequence & Series

• Arithmetic and Geometric progressions, insertion of arithmetic.
• geometric means between two given numbers.
• The relation between A.M. and G.M.
• Sum upto n terms of special series: Sn, Sn2, Sn3
• Arithmetico – Geometric progression.

#### UNIT:8 Limit, Continuity & Differentiability

• Real – valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions.
• Graphs of simple functions.
• Limits, continuity, and differentiability.
• Differentiation of the sum, difference, product, and quotient of two functions.
• Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two.
• Rolle's and Lagrange's Mean Value Theorems.
• Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima, and minima of functions of one variable, tangents, and normals.

#### UNIT:9 Integral Calculus

• Integral as an anti – derivative.
• Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions.
• Integration by substitution, by parts, and by partial fractions.
• Integration using trigonometric identities
• Integral as limit of a sum.
• Evaluation of simple integrals:
• Fundamental Theorem of Calculus.
• Properties of definite integrals, evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.

#### UNIT:10 Differential Equations

• Ordinary differential equations, their order, and degree.
• Formation of differential equations.
• The solution of differential equations by the method of separation of variables.
• The solution of homogeneous and linear differential equations of the type:

#### UNIT:11 Coordinate Geometry

• Cartesian system of rectangular co-ordinates in a plane, distance formula, section formula, locus and its equation, translation of axes, the slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.
• Straight lines: Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines.
• Distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentr, and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines.
• Circles, conic sections: Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the endpoints of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent.
• Sections of cones, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.

#### UNIT:12 3-Dimensional Geometry

• Coordinates of a point in space, the distance between two points.
• Section formula, direction ratios and direction cosines, the angle between two intersecting lines
• Skew lines, the shortest distance between them and its equation.
• Equations of a line and a plane in different forms, the intersection of a line and a plane, coplanar lines.

#### UNIT:13 Vector Algebra

• Vectors and scalars, the addition of vectors.
• Components of a vector in two dimensions and three-dimensional space.
• Scalar and vector products, scalar and vector triple product.

#### UNIT:14 Statistics & Probability

• Measures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.
• Probability: Probability of an event, addition and multiplication theorems of probability, Baye's theorem, probability distribution of a random variate, Bernoulli trials and Binomial distribution.

#### UNIT:15 Trigonometry

• Trigonometrical identities and equations.
• Trigonometrical functions.
• Inverse trigonometrical functions and their properties.
• Heights and Distances.

#### UNIT:16 Mathematical Reasoning

• Statements, logical operations and, or, implies, implied by, if and only if.
• Understanding of tautology, contradiction, converse, and contrapositive.