Question-1 :2022-may-Chemistry_paper_1__TZ1_SL
Topic:
Given: $0.2 \mathrm{~mol}$ of sodium hydrogencarbonate is decomposed by heating until constant mass.
$$
2 \mathrm{NaHCO}_3(\mathrm{~s}) \rightarrow \mathrm{Na}_2 \mathrm{CO}_3(\mathrm{~s})+\mathrm{H}_2 \mathrm{O}(\mathrm{g})+\mathrm{CO}_2(\mathrm{~g})
$$
Calculate: How many moles of gas are produced?
A. $0.1$
B. $0.2$
C. $0.3$
D.$ 0.4$
Answer/Explanation
Solution:
The balanced chemical equation shows that when 2 moles of sodium hydrogencarbonate decompose, 1 mole of carbon dioxide and 1 mole of water are produced. Therefore, if 0.2 mol of sodium hydrogencarbonate is decomposed, the amount of carbon dioxide gas produced will be equal to 0.1 mol, as 0.2 mol of sodium hydrogencarbonate produces 0.1 mol of carbon dioxide.
$\colorbox{yellow}{(B) 0.1 mol}$
Question-2 :2022-may-Chemistry_paper_1__TZ1_SL
Topic:
Given: Molar volume of an ideal gas at STP $=22.7 \mathrm{dm}^3 \mathrm{~mol}^{-1}$.
Calculate: Which sample contains the fewest moles of $\mathrm{HCl}$ ?
$$
N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \text {. }
$$
A. $10.0 \mathrm{~cm}^3$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
B. $6.02 \times 10^{24}$ molecules of $\mathrm{HCl}(\mathrm{g})$
C. $0.365 \mathrm{~g}$ of $\mathrm{HCl}(\mathrm{g})$
D. $2.27 \mathrm{dm}^3$ of $\mathrm{HCl}(\mathrm{g})$ at STP
Answer/Explanation
Solution:
To determine which sample contains the fewest moles of $\mathrm{HCl}$, we need to calculate the number of moles of $\mathrm{HCl}$ in each sample.
For sample A, we have:
Volume of $\mathrm{HCl}(\mathrm{aq})=10.0 \mathrm{~cm}^3=10^{-3} \mathrm{dm}^3$
Concentration of $\mathrm{HCl}(\mathrm{aq})=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
Using the formula for concentration, we can calculate the number of moles of $\mathrm{HCl}$:
$$
\text { Number of moles of } \mathrm{HCl}(\mathrm{aq})=\text { Concentration } \times \text { Volume }=0.1 \mathrm{~mol} \mathrm{dm}^{-3} \times 10^{-3} \mathrm{dm}^3=1.0 \times 10^{-5} \mathrm{~mol}
$$
For sample B, we are given the number of molecules of $\mathrm{HCl(g)}$, but we can convert this to moles using Avogadro’s number:
$$
\text { Number of moles of } \mathrm{HCl}(\mathrm{g})=\frac{\text { Number of molecules of } \mathrm{HCl}(\mathrm{g})}{N_{\mathrm{A}}}=\frac{6.02 \times 10^{24}}{6.02 \times 10^{23}}=10 \mathrm{~mol}
$$
For sample C, we are given the mass of $\mathrm{HCl(g)}$, but we can convert this to moles using the molar mass of $\mathrm{HCl}$:
$$
\text { Number of moles of } \mathrm{HCl}(\mathrm{g})=\frac{\text { Mass of } \mathrm{HCl}(\mathrm{g})}{\text { Molar mass of } \mathrm{HCl}}=\frac{0.365 \mathrm{~g}}{36.46 \mathrm{~g} \mathrm{~mol}^{-1}} \approx 0.01 \mathrm{~mol}
$$
For sample D, we are given the volume of $\mathrm{HCl(g)}$ at STP, but we can convert this to moles using the molar volume of an ideal gas at STP:
$$
\text { Number of moles of } \mathrm{HCl}(\mathrm{g})=\frac{\text { Volume of } \mathrm{HCl}(\mathrm{g}) \text { at STP }}{\text { Molar volume of gas at STP }}=\frac{2.27 \mathrm{dm}^3}{22.7 \mathrm{dm}^3 \mathrm{~mol}^{-1}}=0.1 \mathrm{~mol}
$$
$\colorbox{yellow}{Therefore, sample A contains the fewest moles of}$ $\mathrm{HCl}$, with only $1.0 \times 10^{-5} \mathrm{~mol}$.
Question-3 :2022-may-Chemistry_paper_1__TZ1_SL
Topic:
Discuss: What is the molecular formula of a compound with an empirical formula of $\mathrm{CHO}_2$ and a relative molecular mass of 90 ?
A. $\mathrm{CHO}_2$
B. $\mathrm{C}_2 \mathrm{H}_2 \mathrm{O}_4$
C. $\mathrm{C}_3 \mathrm{H}_6 \mathrm{O}_3$
D. $\mathrm{C}_4 \mathrm{H}_{10} \mathrm{O}_2$
Answer/Explanation
Solution:
To determine the molecular formula of the compound with an empirical formula of $\mathrm{CHO}_2$ and a relative molecular mass of 90, we need to find the actual number of atoms of each element in one molecule of the compound. We can do this by using the empirical formula and the relative molecular mass of the compound.
The empirical formula tells us the simplest whole number ratio of atoms in the compound. For $\mathrm{CHO}_2$, we have one carbon atom, one hydrogen atom, and two oxygen atoms.
The relative molecular mass of the compound is 90, which means that one mole of the compound has a mass of 90 grams. We can use the mass of the empirical formula to determine the actual molecular formula.
Let’s start by calculating the mass of the empirical formula:
$$
\begin{gathered}
\mathrm{C}=1 \times 12.01=12.01 \mathrm{~g} \mathrm{~mol}^{-1} \\
\mathrm{H}=1 \times 1.01=1.01 \mathrm{~g} \mathrm{~mol}^{-1} \\
\mathrm{O}=2 \times 16.00=32.00 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$
Total mass of empirical formula $=12.01+1.01+32.00=45.02 \mathrm{~g} \mathrm{~mol}^{-1}$
To find the molecular formula, we need to divide the relative molecular mass by the mass of the empirical formula and then multiply the subscripts of each element in the empirical formula by this factor. This will give us the actual number of atoms of each element in the molecular formula.
$$
\text { Factor }=\frac{90}{45.02} \approx 2
$$
Multiplying the subscripts in the empirical formula by 2 gives us:
$$
\mathrm{C}_2 \mathrm{H}_2 \mathrm{O}_4
$$
Therefore, the molecular formula of the compound is $\colorbox{yellow}{$\mathrm{C}_2 \mathrm{H}_2 \mathrm{O}_4$(B)}$
Question-4 :2022-may-Chemistry_paper_1__TZ1_SL
Topic:
Given: $8.8 \mathrm{~g}$ of an oxide of nitrogen contains $3.2 \mathrm{~g}$ of oxygen.
Calculate: What is the empirical formula of the compound?
A. $\mathrm{N}_2 \mathrm{O}_5$
B. $\mathrm{N}_2 \mathrm{O}$
C. $\mathrm{NO}_2$
D. $\mathrm{NO}$
Answer/Explanation
Solution:
To find the empirical formula of the compound, we need to determine the simplest whole-number ratio of the atoms present in the compound.
We are given that the compound contains $8.8 \mathrm{~g}$ in total, and $3.2 \mathrm{~g}$ of oxygen. To find the mass of nitrogen, we can subtract the mass of oxygen from the total mass:
$$
8.8 \mathrm{~g}-3.2 \mathrm{~g}=5.6 \mathrm{~g}
$$
Therefore, the mass of nitrogen in the compound is $5.6 \mathrm{~g}$.
Next, we need to convert the masses of nitrogen and oxygen to moles. The molar mass of nitrogen is $14.01 \mathrm{~g/mol}$, and the molar mass of oxygen is $16.00 \mathrm{~g/mol}$, so:
$$
\begin{aligned}
\text { moles of nitrogen } & =\frac{5.6 \mathrm{~g}}{14.01 \mathrm{~g} / \mathrm{mol}} \approx 0.399 \mathrm{~mol} \\
\text { moles of oxygen } & =\frac{3.2 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}}=0.200 \mathrm{~mol}
\end{aligned}
$$
The ratio of nitrogen to oxygen in the compound is:
$$
\frac{0.399 \mathrm{~mol}}{0.200 \mathrm{~mol}} \approx 2: 1
$$
This means that the empirical formula of the compound is $\mathrm{N}_2\mathrm{O}$ (two nitrogen atoms for every one oxygen atom). Therefore, the correct answer is $\colorbox{yellow}{$\mathrm{(B)~\mathrm{N}_2 \mathrm{O}}$}$.
Question-5 :2022-may-Chemistry_paper_1__TZ1_SL
Topic:
Given: Naturally occurring gallium consists of the isotopes ${ }^{71} \mathrm{Ga}$ and ${ }^{69} \mathrm{Ga}$.
$$
M_{\mathrm{r}}(\mathrm{Ga})=69.72
$$
Calculate: What is the approximate percentage abundance of ${ }^{69} \mathrm{Ga}$ ?
A. $40 \%$
B. $50 \%$
C. $60 \%$
D. $75 \%$
▶️Answer/Explanation
Solution:
Let’s denote the percentage abundance of \({ }^{69} \mathrm{Ga}\) as \(x\). The percentage abundance of \({ }^{71} \mathrm{Ga}\) would then be \(100-x\).
Using the given atomic mass and the isotopic masses:
\[
\begin{aligned}
69.72 & =\frac{(x \times 69)+((100-x) \times 71)}{100} \\
69.72 & =\frac{69 x+7100-71 x}{100} \\
69.72 & =\frac{7100-2 x}{100} \\
6972 & =7100-2 x \\
2 x & =128 \\
x & =64
\end{aligned}
\]
So, the percentage abundance of \({ }^{69} \mathrm{Ga}\) is \(64 \%\).
Therefore, the correct answer is approximately \(60 \%\) (option C).