Home / IBDP Maths AHL 1.14 Conjugate roots of polynomial equations AA HL Paper 1- Exam Style Questions

IBDP Maths AHL 1.14 Conjugate roots of polynomial equations AA HL Paper 1- Exam Style Questions

IBDP Maths AHL 1.14 Conjugate roots of polynomial equations AA HL Paper 1- Exam Style Questions- New Syllabus

Question:

(a) Find the binomial expansion of \( (\cos \theta + i \sin \theta)^5 \). Give your answer in the form \( a + bi \), where \( a \) and \( b \) are expressed in terms of \( \sin \theta \) and \( \cos \theta \). [4]

(b) By using De Moivre’s theorem and your answer to part (a), show that \( \sin 5\theta \equiv 16\sin^5 \theta – 20\sin^3 \theta + 5\sin \theta \). [6]

(c) (i) Hence, show that \( \theta = \frac{\pi}{5} \) and \( \theta = \frac{3\pi}{5} \) are solutions of the equation \( 16\sin^4 \theta – 20\sin^2 \theta + 5 = 0 \).

(ii) Hence, show that \( \sin \frac{\pi}{5} \sin \frac{3\pi}{5} = \frac{\sqrt{5}}{4} \). [7]

▶️ Answer/Explanation
Solution

(a) Using the binomial expansion:

\[ (\cos \theta + i \sin \theta)^5 = \sum_{k=0}^{5} \binom{5}{k} (\cos \theta)^{5-k} (i \sin \theta)^k \]

Expanding and simplifying:

\[ = \cos^5 \theta + 5i \cos^4 \theta \sin \theta – 10 \cos^3 \theta \sin^2 \theta – 10i \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta – i \sin^5 \theta \]

Grouping real and imaginary parts:

\[ \boxed{ \left( \cos^5 \theta – 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta \right) + i \left( 5 \cos^4 \theta \sin \theta – 10 \cos^2 \theta \sin^3 \theta – \sin^5 \theta \right) } \]

(b) By De Moivre’s theorem:

\[ (\cos \theta + i \sin \theta)^5 = \cos 5\theta + i \sin 5\theta \]

Equating imaginary parts:

\[ \sin 5\theta = 5 \cos^4 \theta \sin \theta – 10 \cos^2 \theta \sin^3 \theta – \sin^5 \theta \]

Substituting \( \cos^2 \theta = 1 – \sin^2 \theta \):

\[ \sin 5\theta = 5(1 – \sin^2 \theta)^2 \sin \theta – 10(1 – \sin^2 \theta) \sin^3 \theta – \sin^5 \theta \]

Expanding and simplifying:

\[ \boxed{ \sin 5\theta = 16\sin^5 \theta – 20\sin^3 \theta + 5\sin \theta } \]

(c) (i) For \( \theta = \frac{\pi}{5} \) and \( \theta = \frac{3\pi}{5} \), \( \sin 5\theta = 0 \):

\[ 16\sin^4 \theta – 20\sin^2 \theta + 5 = 0 \]

Thus, these angles satisfy the equation.

(c) (ii) Using the quadratic formula on \( 16x^2 – 20x + 5 = 0 \) where \( x = \sin^2 \theta \):

\[ x = \frac{5 \pm \sqrt{5}}{8} \]

Therefore:

\[ \sin \frac{\pi}{5} \sin \frac{3\pi}{5} = \sqrt{\frac{5 – \sqrt{5}}{8}} \times \sqrt{\frac{5 + \sqrt{5}}{8}} = \frac{\sqrt{5}}{4} \]

Thus:

\[ \boxed{ \sin \frac{\pi}{5} \sin \frac{3\pi}{5} = \frac{\sqrt{5}}{4} } \]


 

Markscheme

(a) \( (\cos \theta + i \sin \theta)^5 = \cos 5\theta + i \sin 5\theta \)
Using binomial expansion:
\( \cos 5\theta = \cos^5 \theta – 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta \)
\( \sin 5\theta = 5\cos^4 \theta \sin \theta – 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta \)

(b) Equating imaginary parts:
\( \sin 5\theta = 5\cos^4 \theta \sin \theta – 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta \)
Substituting \( \cos^2 \theta = 1 – \sin^2 \theta \):
\( \sin 5\theta = 16\sin^5 \theta – 20\sin^3 \theta + 5\sin \theta \)

(c) (i) For \( \theta = \frac{\pi}{5} \) and \( \theta = \frac{3\pi}{5} \), \( \sin 5\theta = 0 \), so they satisfy \( 16\sin^4 \theta – 20\sin^2 \theta + 5 = 0 \).
(ii) Using the quadratic formula:
\( \sin^2 \theta = \frac{5 \pm \sqrt{5}}{8} \)
\( \sin \frac{\pi}{5} \sin \frac{3\pi}{5} = \sqrt{\frac{5 + \sqrt{5}}{8}} \times \sqrt{\frac{5 – \sqrt{5}}{8}} = \frac{\sqrt{5}}{4} \)

Question:

A function \(g(x)\) is defined by \(g(x) = 2x^3 – 7x^2 + dx + e\), where \(d, e \in \mathbb{R}\).

\(\alpha, \beta\) and \(\gamma\) are the three roots of the equation \(g(x) = 0\) where \(\alpha, \beta, \gamma \in \mathbb{R}\).

(a) Write down the value of \(\alpha + \beta + \gamma\).

A function \(h(z)\) is defined by \(h(z) = 2z^5 – 11z^4 + rz^3 + sz^2 + tz – 20\), where \(r, s, t \in \mathbb{R}\).

\(\alpha, \beta\) and \(\gamma\) are also roots of the equation \(h(z) = 0\).

It is given that \(h(z) = 0\) is satisfied by the complex number \(z = p + 3i\).

(b) Show that \(p = 1\).

It is now given that \(h\left(\frac{1}{2}\right) = 0\) and \(\alpha, \beta \in \mathbb{Z}^+, \alpha < \beta\) and \(\gamma \in \mathbb{Q}\).

(c) (i) Find the value of the product \(\alpha\beta\).

(ii) Write down the value of \(\alpha\) and the value of \(\beta\).

▶️ Answer/Explanation

Markscheme

(a) \(\boxed{\alpha + \beta + \gamma = \dfrac{7}{2}}\)

(b) \(p – 3i\) is also a root (seen anywhere)

Recognition of 5 roots and attempt to sum these roots

\(p + 3i + p – 3i + \frac{7}{2} = \frac{11}{2}\)

\(\boxed{p = 1}\)

(c) (i) Attempt to find product of 5 roots and equate to ±10

\((1 + 3i)(1 – 3i)\left(\frac{1}{2}\right)\alpha\beta = 10\)

\(\boxed{\alpha\beta = 2}\)

(ii) \(\boxed{\alpha = 1}\) and \(\boxed{\beta = 2}\)


Solution

(a) Using Vieta’s formulas for \(g(x) = 2x^3 – 7x^2 + dx + e\):

\(\alpha + \beta + \gamma = -\dfrac{-7}{2} = \dfrac{7}{2}\)

(b) For \(h(z) = 2z^5 – 11z^4 + \cdots – 20\):

Sum of roots: \(p + 3i + p – 3i + \alpha + \beta + \gamma = \dfrac{11}{2}\)

Substituting from part (a): \(2p + \dfrac{7}{2} = \dfrac{11}{2}\)

Solving gives \(p = 1\)

(c) (i) Product of roots for \(h(z)\):

\((1+3i)(1-3i)\left(\dfrac{1}{2}\right)\alpha\beta = \dfrac{20}{2}\)

\((1+9)\left(\dfrac{1}{2}\right)\alpha\beta = 10\)

\(\alpha\beta = 2\)

(ii) From \(\alpha + \beta = \dfrac{7}{2} – \dfrac{1}{2} = 3\) and \(\alpha\beta = 2\)

The positive integer solutions are \(\alpha = 1\) and \(\beta = 2\)

Scroll to Top