IBDP Maths analysis and approaches Topic: AHL 1.14 :Conjugate roots of polynomial equations HL Paper 1

[Maximum mark: 18]

Question:

In the following Argand diagram, the points Z1 , O and Z2 are the vertices of triangle Z1OZ2 described anticlockwise.

The point Z1 represents the complex number z1 = r1e , where r1 > 0. The point Z2 represents the complex number z2 = r2e , where r2 > 0.

Angles α, θ are measured anticlockwise from the positive direction of the real axis such that 0 ≤ α, θ < 2π and 0 < α – θ < π.

(a) Show that z1z2 * = r1r2e i(α – θ) where z2* is the complex conjugate of z2 .

▶️Answer/Explanation

Ans:

Note: Accept working in modulus-argument form

(b) Given that Re (z1 z2*) = 0, show that Z1OZ2 is a right-angled triangle.
In parts (c), (d) and (e), consider the case where Z1OZ2 is an equilateral triangle.

▶️Answer/Explanation

Ans:

(c) (i) Express z1 in terms of z2 .
      (ii) Hence show that z12 + z22 = z1 z2 .

Let z1 and z2 be the distinct roots of the equation z2 + az + b = 0 where z ∈ C and a , b ∈ R.

▶️Answer/Explanation

Ans:

Note: Accept working in either modulus-argument form to obtain \(z_{1} = z_{2}\left ( cos\frac{\pi }{3} + isin\frac{\pi }{3} \right )\) or in Cartesian form to obtain \(z_{1} = z_{2}\left ( \frac{1}{2} + \frac{\sqrt{3}}{2} \right )i\)

(d) Use the result from part (c)(ii) to show that a2 – 3b = 0.

Consider the equation z2 + az + 12 = 0, where z ∈ C and a ∈ R.

▶️Answer/Explanation

Ans:

(e) Given that 0 < α – θ < π, deduce that only one equilateral triangle Z1OZ2 can be formed from the point O and the roots of this equation.

▶️Answer/Explanation

Ans:

so (for 0 <  α – θ < π), only one equilateral triangle can be formed from point O and the two roots of this equation

Question

Consider the equation \(\frac{2z}{3-z}\) = i where z = x + i y and x , y ∈ R.

Find the value of x and the value of y .  [Maximum mark: 5]

▶️Answer/Explanation

Ans:

substituting z =  x + iy and *z = x – iy 

\(\frac{2(x+iy)}{3-(x-iy)}\)=i

2x+2iy = -y + i (3-x)

equate real and imaginary:

y= -2x AND 2y= 3-x

solving simultaneously: x= -1, y=2 (z=-1+2i)

Question

Given that \({z_1} = 2\) and \({z_2} = 1 + \sqrt 3 {\text{i}}\) are roots of the cubic equation \({z^3} + b{z^2} + cz + d = 0\) where b, c, \(d \in \mathbb{R}\),

(a)     write down the third root, \({z_3}\), of the equation;

▶️Answer/Explanation

Ans: \(1 – \sqrt 3 {\text{i}}\)     A1

(b)     find the values of b, c and d ;
▶️Answer/Explanation

Ans:

EITHER

\(\left( {z – (1 + \sqrt 3 {\text{i)}}} \right)\left( {z – (1 – \sqrt 3 {\text{i)}}} \right) = {z^2} – 2z + 4\)     (M1)A1

\(p(z) = (z – 2)({z^2} – 2z + 4)\)     (M1)

\( = {z^3} – 4{z^2} + 8z – 8\)     A1

therefore \(b = – 4,{\text{ }}c = 8,{\text{ }}d = – 8\)

OR

relating coefficients of cubic equations to roots

\( – b = 2 + 1 + \sqrt 3 {\text{i}} + 1 – \sqrt 3 {\text{i}} = 4\)     M1

\(c = 2(1 + \sqrt 3 {\text{i}}) + 2(1 – \sqrt 3 {\text{i}}) + (1 + \sqrt 3 {\text{i}})(1 – \sqrt 3 {\text{i}}) = 8\)

\( – d = 2(1 + \sqrt 3 {\text{i}})(1 – \sqrt 3 {\text{i}}) = 8\)

\(b = – 4,{\text{ }}c = 8,{\text{ }}d = – 8\)     A1A1A1

(c)     write \({z_2}\) and \({z_3}\) in the form \(r{{\text{e}}^{{\text{i}}\theta }}\).
▶️Answer/Explanation

 Ans: \({z_2} = 2{{\text{e}}^{\frac{{{\text{i}}\pi }}{3}}},{\text{ }}{z_3} = 2{{\text{e}}^{ – \frac{{{\text{i}}\pi }}{3}}}\)     A1A1A1

Note: Award A1 for modulus,

A1 for each argument.

[8 marks]

Question

Let \(z = \cos \theta  + i\sin \theta \).

a. Use de Moivre’s theorem to find the value of \({\left( {\cos \left( {\frac{\pi }{3}} \right) + {\text{i}}\sin \left( {\frac{\pi }{3}} \right)} \right)^3}\).[2]

▶️Answer/Explanation

Ans:

\({\left( {\cos \left( {\frac{\pi }{3}} \right) + {\text{i}}\sin \left( {\frac{\pi }{3}} \right)} \right)^3} = \cos \pi  + {\text{i}}\sin \pi \)    M1

\( =  – 1\)    A1

[2 marks]

b. Use mathematical induction to prove that

\[{(\cos \theta  – {\text{i}}\sin \theta )^n} = \cos n\theta  – {\text{i}}\sin n\theta {\text{ for }}n \in {\mathbb{Z}^ + }.\][6]

▶️Answer/Explanation

Ans:

show the expression is true for \(n = 1\)     R1

assume true for \(n = k,{\text{ }}{(\cos \theta  – {\text{i}}\sin \theta )^k} = \cos k\theta  – {\text{i}}\sin k\theta \)     M1

Note:     Do not accept “let \(n = k\)” or “assume \(n = k\)”, assumption of truth must be present.

\({(\cos \theta  – {\text{i}}\sin \theta )^{k + 1}} = {(\cos \theta  – {\text{i}}\sin \theta )^k}(\cos \theta  – {\text{i}}\sin \theta )\)

\( = (\cos k\theta  – {\text{i}}\sin k\theta )(\cos \theta  – {\text{i}}\sin \theta )\)    M1

\( = \cos k\theta \cos \theta  – \sin k\theta \sin \theta  – {\text{i}}(\cos k\theta \sin \theta  + \sin k\theta \cos \theta )\)    A1

Note:     Award A1 for any correct expansion.

\( = \cos \left( {(k + 1)\theta } \right) – {\text{i}}\sin \left( {(k + 1)\theta } \right)\)    A1

therefore if true for \(n = k\) true for \(n = k + 1\), true for \(n = 1\), so true for all \(n( \in {\mathbb{Z}^ + })\)     R1

Note:     To award the final R mark the first 4 marks must be awarded.

[6 marks]

c. Find an expression in terms of \(\theta \) for \({(z)^n} + {(z{\text{*}})^n},{\text{ }}n \in {\mathbb{Z}^ + }\) where \(z{\text{*}}\) is the complex conjugate of \(z\).[2]

▶️Answer/Explanation

Ans:

\({(z)^n} + {(z{\text{*}})^n} = {(\cos \theta  + {\text{i}}\sin \theta )^n} + {(\cos \theta  – {\text{i}}\sin \theta )^n}\)

\( = \cos n\theta  + {\text{i}}\sin n\theta  + \cos n\theta  – {\text{i}}\sin n\theta  = 2\cos (n\theta )\)    (M1)A1

[2 marks]

d. (i)     Show that \(zz{\text{*}} = 1\).]
▶️Answer/Explanation

Ans:

\(zz* = (\cos \theta  + {\text{i}}\sin \theta )(\cos \theta  – {\text{i}}\sin \theta )\)

\( = {\cos ^2}\theta  + {\sin ^2}\theta \)    A1

\( = 1\)    AG

Note:     Allow justification starting with \(|z| = 1\).

(ii)     Write down the binomial expansion of \({(z + z{\text{*}})^3}\) in terms of \(z\) and \(z{\text{*}}\).

▶️Answer/Explanation

Ans: \({(z + z{\text{*}})^3} = {z^3} + 3{z^2}z{\text{*}} + 3z{({z^*})^2} + (z{\text{*}})3\left( { = {z^3} + 3z + 3z{\text{*}} + {{(z{\text{*}})}^3}} \right)\)     A1

(iii)     Hence show that \(\cos 3\theta  = 4{\cos ^3}\theta  – 3\cos \theta \).[5]
▶️Answer/Explanation

Ans:

\({(z + z{\text{*}})^3} = {(2\cos \theta )^3}\)     A1

\({z^3} + 3z + 3z{\text{*}} + {(z{\text{*}})^3} = 2\cos 3\theta  + 6\cos \theta \)    M1A1

\(\cos 3\theta  = 4{\cos ^3}\theta  – 3\cos \theta \)   AG

Note:     M1 is for using \(zz{\text{*}} = 1\), this might be seen in d(ii).

[5 marks]

e. Hence solve \(4{\cos ^3}\theta  – 2{\cos ^2}\theta  – 3\cos \theta  + 1 = 0\) for \(0 \leqslant \theta  < \pi \).[6]

▶️Answer/Explanation

Ans:

\(4{\cos ^3}\theta  – 2{\cos ^2}\theta  – 3\cos \theta  + 1 = 0\)

\(4{\cos ^3}\theta  – 3\cos \theta  = 2{\cos ^2}\theta  – 1\)

\(\cos (3\theta ) = \cos (2\theta )\)    A1A1

Note:     A1 for \(\cos (3\theta )\) and A1 for \(\cos (2\theta )\).

\(\theta  = 0\)    A1

or \(3\theta  = 2\pi  – 2\theta {\text{ }}({\text{or }}3\theta  = 4\pi  – 2\theta )\)     M1

\(\theta  = \frac{{2\pi }}{5},{\text{ }}\frac{{4\pi }}{5}\)    A1A1

Note:     Do not accept solutions via factor theorem or other methods that do not follow “hence”.

[6 marks]

Scroll to Top