IBDP Maths analysis and approaches Topic: AHL 1.16 :Solutions of systems of linear equations HL Paper 1

[Maximum mark: 6]

Question:

Consider any three consecutive integers, n – 1, n and n + 1.
(a) Prove that the sum of these three integers is always divisible by 3.

▶️Answer/Explanation

Ans: (n – 1) + n + (n + 1)

= 3n

which is always divisible by 3 

(b) Prove that the sum of the squares of these three integers is never divisible by 3.

▶️Answer/Explanation

Ans: (n -1)2 +n2 + (n+1)2     (=n2 – 2n + 1 + n2 + n2 + 2n + 1)
        attempts to expand either  (n -1)2 or  (n+1)2  ( do not accept n2 – 1  or n2 + 1)
        = 3n2 + 2

        demonstrating recognition that 2 is not divisible by 3 or \(\frac{2}{3}\)   seen after correct 
        expression divided by 3
        3n2  is divisible by 3 and so 3n2 + 2 is never divisible by 3 
        OR the first term is divisible by 3, the second is not

        OR  \(3\left ( n^{2}+\frac{2}{3} \right ) OR \frac{3n^{2} + 2}{3} = n^{2} + \frac{2}{3}\)
        hence the sum of the squares is never divisible by 3

Question

Consider the following equations, where a , \(b \in \mathbb{R}:\)

\(x + 3y + (a – 1)z = 1\)

\(2x + 2y + (a – 2)z = 1\)

\(3x + y + (a – 3)z = b.\)

a. If each of these equations defines a plane, show that, for any value of a , the planes do not intersect at a unique point.[3]

▶️Answer/Explanation

Ans:

METHOD 1

\(\det \left( {\begin{array}{*{20}{c}}
  1&3&{a – 1} \\
  2&2&{a – 2} \\
  3&1&{a – 3}
\end{array}} \right)\)     M1

\( = 1\left( {2(a – 3) – (a – 2)} \right) – 3\left( {2(a – 3) – 3(a – 2)} \right) + (a – 1)(2 – 6)\)

(or equivalent)     A1

= 0 (therefore there is no unique solution)     A1

[3 marks] 

METHOD 2 

\(\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
2&2&{a – 2}\\
3&1&{a – 3}
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
1\\

b. Find the value of b for which the intersection of the planes is a straight line.[4]
▶️Answer/Explanatio

Ans:

\end{array}} \right):\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
0&{ – 4}&{ – a}\\
0&{ – 8}&{ – 2a}
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
{b – 3}
\end{array}} \right)\)     M1A1

\(:\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
0&{ – 4}&{ – a}\\
0&0&0
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
{b – 1}
\end{array}} \right)\) (and 3 zeros imply no unique solution)     A1

[3 marks]

a.

METHOD 1

\(\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
2&2&{a – 2}\\
3&1&{a – 3}
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
1\\
b
\end{array}} \right):\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
0&{ – 4}&{ – a}\\
0&{ – 8}&{ – 2a}
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
{b – 3}
\end{array}} \right)\)     M1A1

\(:\left( {\begin{array}{*{20}{c}}
1&3&{a – 1}\\
0&{ – 4}&{ – a}\\
0&0&0
\end{array}} \right|\left. {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
{b – 1}
\end{array}} \right)\)     A1

b = 1     A1     N2

Note: Award M1 for an attempt to use row operations.

 [4 marks]

METHOD 2

b = 1     A4

Note: Award A4 only if “ b −1 ” seen in (a).

[4 marks]

Question

(a)     Show that the following system of equations has an infinite number of solutions.

     \(x + y + 2z =  – 2\)

     \(3x – y + 14z = 6\)

     \(x + 2y =  – 5\)

The system of equations represents three planes in space.

▶️Answer/Explanation

Ans:

EITHER

\(\left( {\begin{array}{*{20}{c}}1&1&2\\3&{ – 1}&{14}\\1&2&0\end{array}\left| \begin{array}{c} – 2\\6\\ – 5\end{array} \right.} \right) \to \left( {\begin{array}{*{20}{c}}1&1&2\\0&1&{ – 2}\\0&0&0\end{array}\left| \begin{array}{c} – 2\\ – 3\\0\end{array} \right.} \right)\)     M1

row of zeroes implies infinite solutions, (or equivalent).     R1

Note:     Award M1 for any attempt at row reduction.

OR

\(\left| {\begin{array}{*{20}{c}}1&1&2\\3&{ – 1}&{14}\\1&2&0\end{array}} \right| = 0\)     M1

\(\left| {\begin{array}{*{20}{c}}1&1&2\\3&{ – 1}&{14}\\1&2&0\end{array}} \right| = 0\) with one valid point     R1

OR

\(x + y + 2z =  – 2\)

\(3x – y + 14z = 6\)

\(x + 2y =  – 5\)   \( \Rightarrow x =  – 5 – 2y\)

substitute \(x =  – 5 – 2y\) into the first two equations:

\( – 5 – 2y + y + 2z =  – 2\)

\(3( – 5 – 2y) – y + 14z = 6\)     M1

\( – y + 2z = 3\)

\( – 7y + 14z = 21\)

the latter two equations are equivalent (by multiplying by 7) therefore an infinite number of solutions.     R1

OR

for example, \(7 \times {{\text{R}}_1} – {{\text{R}}_2}\) gives \(4x + 8y =  – 20\)     M1

this equation is a multiple of the third equation, therefore an infinite

number of solutions.     R1

[2 marks]

(b)     Find the parametric equations of the line of intersection of the three planes.

▶️Answer/Explanation

Ans:

let \(y = t\)     M1

then \(x =  – 5 – 2t\)     A1

\(z = \frac{{t + 3}}{2}\)     A1

OR

let \(x = t\)     M1

then \(y = \frac{{ – 5 – t}}{2}\)     A1

\(z = \frac{{1 – t}}{4}\)     A1

OR

let \(z = t\)     M1

then \(x = 1 – 4t\)     A1

\(y =  – 3 + 2t\)     A1

OR

attempt to find cross product of two normal vectors:

eg: \(\left| {\begin{array}{*{20}{c}}i&j&k\\1&1&2\\1&2&0\end{array}} \right| =  – 4i + 2j + k\)     M1A1

\(x = 1 – 4t\)

\(y =  – 3 + 2t\)

\(z = t\)     A1

(or equivalent)

[3 marks]

Total [5 marks]

Question

The following system of equations represents three planes in space.

\[x + 3y + z =  – 1\]

\[x + 2y – 2z = 15\]

\[2x + y – z = 6\]

Find the coordinates of the point of intersection of the three planes.

▶️Answer/Explanation

Markscheme

EITHER

eliminating a variable, \(x\), for example to obtain \(y + 3z =  – 16\) and \( – 5y – 3z = 8\)     M1A1

attempting to find the value of one variable     M1

point of intersection is \(( – 1,{\text{ }}2,{\text{ }} – 6)\)     A1A1A1

OR

attempting row reduction of relevant matrix, eg.      M1

correct matrix with two zeroes in a column, eg.      A1

further attempt at reduction     M1

point of intersection is \(( – 1,{\text{ }}2,{\text{ }} – 6)\)     A1A1A1

Note:     Allow solution expressed as \(x =  – 1,{\text{ }}y = 2,{\text{ }}z =  – 6\) for final A marks.

[6 marks]

Question

a. Consider the following system of equations:

\[x + y + z = 1\]

\[2x + 3y + z = 3\]

\[x + 3y – z = \lambda \]

where \(\lambda  \in \mathbb{R}\) .

▶️Answer/Explanation

Ans:

using row operations,     M1

to obtain 2 equations in the same 2 variables     A1A1

for example \(y – z = 1\)

\(2y – 2z = \lambda  – 1\)

the fact that one of the left hand sides is a multiple of the other left hand side indicates that the equations do not have a unique solution, or equivalent     R1AG

[4 marks]

b. Show that this system does not have a unique solution for any value of \(\lambda \) .[4]

(i)     Determine the value of \(\lambda \) for which the system is consistent.

▶️Answer/Explanation

Ans: \(\lambda = 3\)     A1

(ii)     For this value of \(\lambda \) , find the general solution of the system.[4]
▶️Answer/Explanation

Ans:

put \(z = \mu \)     M1

then \(y = 1 + \mu \)     A1

and \(x = – 2\mu \) or equivalent     A1

[4 marks]

Question

Solve the following system of equations:
3x – 2y + z = -4
x + y – z = -2
2x + 3y = 4

▶️Answer/Explanation

Ans
sing an elimination method,
3x – 2y +z = -4
 x  –  y  –  z = -2
4x –  y = -6
     4x + 6y = 8
7y = 14
Therefore x = -1, y = 2, z = 3

Scroll to Top