IBDP Maths analysis and approaches Topic: SL 2.10 : Solving equations, both graphically and analytically HL Paper 1

Question

The graph of a polynomial function f of degree 4 is shown below.

Given that \({(x + {\text{i}}y)^2} = – 5 + 12{\text{i}},{\text{ }}x,{\text{ }}y \in \mathbb{R}\) . Show that

(i)     \({x^2} – {y^2} = – 5\) ;

(ii)     \(xy = 6\) .[2]

A.a.

Hence find the two square roots of \( – 5 + 12{\text{i}}\) .[5]

A.b.

For any complex number z , show that \({(z^*)^2} = ({z^2})^*\) .[3]

A.c.

Hence write down the two square roots of \( – 5 – 12{\text{i}}\) .[2]

A.d.

Explain why, of the four roots of the equation \(f(x) = 0\) , two are real and two are complex.[2]

B.a.

The curve passes through the point \(( – 1,\, – 18)\) . Find \(f(x)\) in the form

\(f(x) = (x – a)(x – b)({x^2} + cx + d),{\text{ where }}a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\) .[5]

B.b.

Find the two complex roots of the equation \(f(x) = 0\) in Cartesian form.[2]

B.c.

Draw the four roots on the complex plane (the Argand diagram).[2]

B.d.

Express each of the four roots of the equation in the form \(r{{\text{e}}^{{\text{i}}\theta }}\) .[6]

B.e.
▶️Answer/Explanation

Markscheme

(i)     \({(x + {\text{i}}y)^2} = – 5 + 12{\text{i}}\)

\({x^2} + 2{\text{i}}xy + {{\text{i}}^2}{y^2} = – 5 + 12{\text{i}}\)     A1

(ii)     equating real and imaginary parts     M1

\({x^2} – {y^2} = – 5\)     AG

\(xy = 6\)     AG

[2 marks]

A.a.

substituting     M1

EITHER

\({x^2} – \frac{{36}}{{{x^2}}} = – 5\)

\({x^4} + 5{x^2} – 36 = 0\)     A1

\({x^2} = 4,\, – 9\)     A1

\(x = \pm 2\) and \(y = \pm 3\)     (A1)

OR

\(\frac{{36}}{{{y^2}}} – {y^2} = – 5\)

\({y^4} – 5{y^2} – 36 = 0\)     A1

\({y^2} = 9,\, – 4\)     A1

\({y^2} = \pm 3\) and \(x = \pm 2\)     (A1) 

Note: Accept solution by inspection if completely correct.

THEN

the square roots are \((2 + 3{\text{i}})\) and \(( – 2 – 3{\text{i}})\)     A1

[5 marks]

A.b.

EITHER

consider \(z = x + {\text{i}}y\)

\(z^* = x – {\text{i}}y\)

\({(z^*)^2} = {x^2} – {y^2} – 2{\text{i}}xy\)     A1

\(({z^2}) = {x^2} – {y^2} + 2{\text{i}}xy\)     A1

\(({z^2})^* = {x^2} – {y^2} – 2{\text{i}}xy\)     A1

\({(z^*)^2} = ({z^2})^*\)     AG

OR

\(z^* = r{{\text{e}}^{ – {\text{i}}\theta }}\)

\({(z^*)^2} = {r^2}{{\text{e}}^{ – 2{\text{i}}\theta }}\)     A1

\({z^2} = {r^2}{{\text{e}}^{2{\text{i}}\theta }}\)     A1

\(({z^2})^* = {r^2}{{\text{e}}^{ – 2{\text{i}}\theta }}\)     A1

\({(z^*)^2} = ({z^2})^*\)     AG

[3 marks]

A.c.

\((2 – 3{\text{i}})\) and \(( – 2 + 3{\text{i}})\)     A1A1

[2 marks]

A.d.

the graph crosses the x-axis twice, indicating two real roots     R1

since the quartic equation has four roots and only two are real, the other two roots must be complex     R1

[2 marks]

B.a.

\(f(x) = (x + 4)(x – 2)({x^2} + cx + d)\)     A1A1

\(f(0) = – 32 \Rightarrow d = 4\)     A1

Since the curve passes through \(( – 1,\, – 18)\),

\( – 18 = 3 \times ( – 3)(5 – c)\)     M1

\(c = 3\)     A1

Hence \(f(x) = (x + 4)(x – 2)({x^2} + 3x + 4)\)

[5 marks]

B.b.

\(x = \frac{{ – 3 \pm \sqrt {9 – 16} }}{2}\)     (M1)

\( \Rightarrow x = – \frac{3}{2} \pm {\text{i}}\frac{{\sqrt 7 }}{2}\)     A1

[2 marks]

B.c.

     A1A1

Note: Accept points or vectors on complex plane.

Award A1 for two real roots and A1 for two complex roots.

[2 marks]

B.d.

real roots are \(4{{\text{e}}^{{\text{i}}\pi }}\) and \(2{{\text{e}}^{{\text{i}}0}}\)     A1A1

considering \( – \frac{3}{2} \pm {\text{i}}\frac{{\sqrt 7 }}{2}\)

\(r = \sqrt {\frac{9}{4} + \frac{7}{4}}  = 2\)     A1

finding \(\theta \) using \(\arctan \left( {\frac{{\sqrt 7 }}{3}} \right)\)     M1

\(\theta  = \arctan \left( {\frac{{\sqrt 7 }}{3}} \right) + \pi {\text{ or }}\theta  = \arctan \left( { – \frac{{\sqrt 7 }}{3}} \right) + \pi \)     A1

\( \Rightarrow z = 2{{\text{e}}^{{\text{i}}\left( {\arctan \left( {\frac{{\sqrt 7 }}{3}} \right) + \pi } \right)}}{\text{ or}} \Rightarrow z = 2{{\text{e}}^{{\text{i}}\left( {\arctan \left( {\frac{{ – \sqrt 7 }}{3}} \right) + \pi } \right)}}\)     A1 

Note: Accept arguments in the range \( – \pi {\text{ to }}\pi {\text{ or }}0{\text{ to }}2\pi \) .

Accept answers in degrees.

 

[6 marks]

B.e.

Question

The quadratic equation \({x^2} – 2kx + (k – 1) = 0\) has roots \(\alpha \) and \(\beta \) such that \({\alpha ^2} + {\beta ^2} = 4\). Without solving the equation, find the possible values of the real number \(k\).

▶️Answer/Explanation

Markscheme

\(\alpha  + \beta  = 2k\)    A1

\(\alpha \beta  = k – 1\)    A1

\({(\alpha  + \beta )^2} = 4{k^2} \Rightarrow {\alpha ^2} + {\beta ^2} + 2\underbrace {\alpha \beta }_{k – 1} = 4{k^2}\)    (M1)

\({\alpha ^2} + {\beta ^2} = 4{k^2} – 2k + 2\)

\({\alpha ^2} + {\beta ^2} = 4 \Rightarrow 4{k^2} – 2k – 2 = 0\)    A1

attempt to solve quadratic     (M1)

\(k = 1,{\text{ }} – \frac{1}{2}\)    A1

[6 marks]

Question

Sketch the graphs of \(y = \frac{x}{2} + 1\) and \(y = \left| {x – 2} \right|\) on the following axes.

[3]

a.

Solve the equation \(\frac{x}{2} + 1 = \left| {x – 2} \right|\).[4]

b.
▶️Answer/Explanation

Markscheme

straight line graph with correct axis intercepts      A1

modulus graph: V shape in upper half plane      A1

modulus graph having correct vertex and y-intercept      A1

[3 marks]

a.

METHOD 1

attempt to solve \(\frac{x}{2} + 1 = x – 2\)     (M1)

\(x = 6\)      A1

Note: Accept \(x = 6\) using the graph.

attempt to solve (algebraically) \(\frac{x}{2} + 1 = 2 – x\)     M1

\(x = \frac{2}{3}\)     A1

[4 marks]

METHOD 2

\({\left( {\frac{x}{2} + 1} \right)^2} = {\left( {x – 2} \right)^2}\)      M1

\(\frac{{{x^2}}}{4} + x + 1 = {x^2} – 4x + 4\)

\(0 = \frac{{3{x^2}}}{4} – 5x + 3\)

\(3{x^2} – 20x + 12 = 0\)

attempt to factorise (or equivalent)       M1

\(\left( {3x – 2} \right)\left( {x – 6} \right) = 0\)

\(x = \frac{2}{3}\)     A1

\(x = 6\)      A1

[4 marks]

b.
Scroll to Top