IBDP Maths analysis and approaches Topic: AHL 2.12:Sum and product of the roots of polynomial equations HL Paper 1

Question:  [Maximum mark: 4]

Consider the equation kx2 – (k + 3) x + 2k + 9 = 0, where k ∈ R.
(a) Write down an expression for the product of the roots, in terms of k .
(b) Hence or otherwise, determine the values of k such that the equation has one positive and one negative real root.

Answer/Explanation

Ans:

(a) product of roots \(=\frac{2k+9}{k}\)

(b) recognition that the product of the roots will be negative  
\(=\frac{2k+9}{k}\) < 0

critical values \(k = 0, -\frac{9}{2}\)

\(-\frac{9}{2}<k<0\)

Question

The cubic equation x3 – kx2 + 3k = 0 where k > 0 has roots α , β and α + β .

Given that α.β =\(\frac{-k^2}{4}\) , find the value of k .[Maximum mark: 5]

Answer/Explanation

Ans:

Question

The equation \(5{x^3} + 48{x^2} + 100x + 2 = a\) has roots \({r_1}\), \({r_2}\) and \({r_3}\).

Given that \({r_1} + {r_2} + {r_3} + {r_1}{r_2}{r_3} = 0\), find the value of a.

Answer/Explanation

Markscheme

\({r_1} + {r_2} + {r_3} = \frac{{ – 48}}{5}\)     (M1)(A1)

\({r_1}{r_2}{r_3} = \frac{{a – 2}}{5}\)     (M1)(A1)

\(\frac{{ – 48}}{5} + \frac{{a – 2}}{5} = 0\)     M1

\(a = 50\)     A1

Note:     Award M1A0M1A0M1A1 if answer of 50 is found using \(\frac{{48}}{5}\) and \(\frac{{2 – a}}{5}\).

[6 marks]

Question

The roots of a quadratic equation \(2{x^2} + 4x – 1 = 0\) are \(\alpha \) and \(\beta \).

Without solving the equation,

(a)     find the value of \({\alpha ^2} + {\beta ^2}\);

(b)     find a quadratic equation with roots \({\alpha ^2}\) and \({\beta ^2}\).

Answer/Explanation

Markscheme

(a) using the formulae for the sum and product of roots:

\(\alpha  + \beta  =  – 2\)     A1

\(\alpha \beta  =  – \frac{1}{2}\)     A1

\({\alpha ^2} + {\beta ^2} = {(\alpha  + \beta )^2} – 2\alpha \beta \)     M1

\( = {( – 2)^2} – 2\left( { – \frac{1}{2}} \right)\)

\( = 5\)     A1

Note:     Award M0 for attempt to solve quadratic equation.

[4 marks]

(b)     \((x – {\alpha ^2})(x – {\beta ^2}) = {x^2} – ({\alpha ^2} + {\beta ^2})x + {\alpha ^2}{\beta ^2}\)     M1

\({x^2} – 5x + {\left( { – \frac{1}{2}} \right)^2} = 0\)     A1

\({x^2} – 5x + \frac{1}{4} = 0\)

Note:     Final answer must be an equation. Accept alternative correct forms.

[2 marks]

Total [6 marks]

Question

The quadratic equation \(2{x^2} – 8x + 1 = 0\) has roots \(\alpha \) and \(\beta \).

Without solving the equation, find the value of

(i)     \(\alpha  + \beta \);

(ii)     \(\alpha \beta \).[2]

a.

Another quadratic equation \({x^2} + px + q = 0,{\text{ }}p,{\text{ }}q \in \mathbb{Z}\) has roots \(\frac{2}{\alpha }\) and \(\frac{2}{\beta }\).

Find the value of \(p\) and the value of \(q\).[4]

b.
Answer/Explanation

Markscheme

using the formulae for the sum and product of roots:

(i)     \(\alpha  + \beta  = 4\)     A1

(ii)     \(\alpha \beta  = \frac{1}{2}\)     A1

Note:     Award A0A0 if the above results are obtained by solving the original equation (except for the purpose of checking).

[2 marks]

a.

METHOD 1

required quadratic is of the form \({x^2} – \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)x + \left( {\frac{2}{\alpha }} \right)\left( {\frac{2}{\beta }} \right)\)     (M1)

\(q = \frac{4}{{\alpha \beta }}\)

\(q = 8\)     A1

\(p =  – \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)\)

\( =  – \frac{{2(\alpha  + \beta )}}{{\alpha \beta }}\)     M1

\( =  – \frac{{2 \times 4}}{{\frac{1}{2}}}\)

\(p =  – 16\)     A1

Note:     Accept the use of exact roots

METHOD 2

replacing \(x\) with \(\frac{2}{x}\)     M1

\(2{\left( {\frac{2}{x}} \right)^2} – 8\left( {\frac{2}{x}} \right) + 1 = 0\)

\(\frac{8}{{{x^2}}} – \frac{{16}}{x} + 1 = 0\)     (A1)

\({x^2} – 16x + 8 = 0\)

\(p =  – 16\) and \(q = 8\)     A1A1

Note:     Award A1A0 for \({x^2} – 16x + 8 = 0\) ie, if \(p =  – 16\) and \(q = 8\) are not explicitly stated.

[4 marks]

Total [6 marks]

b.

Question

The quadratic equation \(2{x^2} – 8x + 1 = 0\) has roots \(\alpha \) and \(\beta \).

Without solving the equation, find the value of

(i)     \(\alpha  + \beta \);

(ii)     \(\alpha \beta \).[2]

a.

Another quadratic equation \({x^2} + px + q = 0,{\text{ }}p,{\text{ }}q \in \mathbb{Z}\) has roots \(\frac{2}{\alpha }\) and \(\frac{2}{\beta }\).

Find the value of \(p\) and the value of \(q\).[4]

b.
Answer/Explanation

Markscheme

using the formulae for the sum and product of roots:

(i)     \(\alpha  + \beta  = 4\)     A1

(ii)     \(\alpha \beta  = \frac{1}{2}\)     A1

Note:     Award A0A0 if the above results are obtained by solving the original equation (except for the purpose of checking).

[2 marks]

a.

METHOD 1

required quadratic is of the form \({x^2} – \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)x + \left( {\frac{2}{\alpha }} \right)\left( {\frac{2}{\beta }} \right)\)     (M1)

\(q = \frac{4}{{\alpha \beta }}\)

\(q = 8\)     A1

\(p =  – \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)\)

\( =  – \frac{{2(\alpha  + \beta )}}{{\alpha \beta }}\)     M1

\( =  – \frac{{2 \times 4}}{{\frac{1}{2}}}\)

\(p =  – 16\)     A1

Note:     Accept the use of exact roots

METHOD 2

replacing \(x\) with \(\frac{2}{x}\)     M1

\(2{\left( {\frac{2}{x}} \right)^2} – 8\left( {\frac{2}{x}} \right) + 1 = 0\)

\(\frac{8}{{{x^2}}} – \frac{{16}}{x} + 1 = 0\)     (A1)

\({x^2} – 16x + 8 = 0\)

\(p =  – 16\) and \(q = 8\)     A1A1

Note:     Award A1A0 for \({x^2} – 16x + 8 = 0\) ie, if \(p =  – 16\) and \(q = 8\) are not explicitly stated.

[4 marks]

Total [6 marks]

b.
Scroll to Top