IBDP Maths analysis and approaches Topic: SL 3.6 :Pythagorean identities HL Paper 1

Question

In the triangle ABC, \({\rm{A\hat BC}} = 90^\circ\) , \({\text{AC}} = \sqrt {\text{2}}\) and AB = BC + 1.

a.Show that cos \(\hat A – \sin \hat A = \frac{1}{{\sqrt 2 }}\). [3]

 

b.By squaring both sides of the equation in part (a), solve the equation to find the angles in the triangle. [8]

 

c.Apply Pythagoras’ theorem in the triangle ABC to find BC, and hence show that \(\sin \hat A = \frac{{\sqrt 6 – \sqrt 2 }}{4}\). [6]

 

d. Hence, or otherwise, calculate the length of the perpendicular from B to [AC]. [4]

 
▶️Answer/Explanation

Markscheme

a.\(\cos \hat A = \frac{{{\text{BA}}}}{{\sqrt 2 }}\)     A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }}\)     A1

\(\cos \hat A – \sin \hat A = \frac{{{\text{BA}} – {\text{BC}}}}{{\sqrt 2 }}\)     R1

\( = \frac{1}{{\sqrt 2 }}\)     AG

[3 marks]

b.

\({\cos ^2}\hat A – 2\cos \hat A\sin \hat A + {\sin ^2}\hat A = \frac{1}{2}\)     M1A1

\(1 – 2\sin \hat A\cos \hat A = \frac{1}{2}\)     M1A1

\(\sin 2\hat A = \frac{1}{2}\)     M1

\(2\hat A = 30^\circ \)     A1

angles in the triangle are 15° and 75°     A1A1

Note: Accept answers in radians.

[8 marks]

c.

\({\text{B}}{{\text{C}}^2} + {({\text{BC}} + 1)^2} = 2\)     M1A1

\(2{\text{B}}{{\text{C}}^2} + 2{\text{BC}} – 1 = 0\)     A1

\({\text{BC}} = \frac{{ -2 + \sqrt {12} }}{4}\left( { = \frac{{\sqrt 3  – 1}}{2}} \right)\)     M1A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }} = \frac{{\sqrt 3 – 1}}{{2\sqrt 2 }}\)     A1

\( = \frac{{\sqrt 6 – \sqrt 2 }}{4}\)     AG

[6 marks]

d.

EITHER

\(h = {\text{ABsin}}\hat A\)     M1

\( = ({\text{BC}} + 1)\sin \hat A\)     A1

\( = \frac{{\sqrt 3  + 1}}{2} \times \frac{{\sqrt 6 – \sqrt 2 }}{4} = \frac{{\sqrt 2 }}{4}\)     M1A1

OR

\(\tfrac{1}{2}AB.BC = \tfrac{1}{2}AC.h\)     M1

\(\frac{{\sqrt 3 – 1}}{2} \cdot \frac{{\sqrt {3 + 1} }}{2} = \sqrt {2h} \)     A1

\(\frac{2}{4} = \sqrt 2 h\)     M1

\(h = \frac{1}{{2\sqrt 2 }}\)     A1

[4 marks]

 

 

 
 
 
 

Question

In the triangle ABC, \({\rm{A\hat BC}} = 90^\circ\) , \({\text{AC}} = \sqrt {\text{2}}\) and AB = BC + 1.

a.Show that cos \(\hat A – \sin \hat A = \frac{1}{{\sqrt 2 }}\). [3]

 

b.By squaring both sides of the equation in part (a), solve the equation to find the angles in the triangle. [8]

c.Apply Pythagoras’ theorem in the triangle ABC to find BC, and hence show that \(\sin \hat A = \frac{{\sqrt 6 – \sqrt 2 }}{4}\). [6]

d.Hence, or otherwise, calculate the length of the perpendicular from B to [AC]. [4]

▶️Answer/Explanation

Markscheme

a. \(\cos \hat A = \frac{{{\text{BA}}}}{{\sqrt 2 }}\)     A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }}\)     A1

\(\cos \hat A – \sin \hat A = \frac{{{\text{BA}} – {\text{BC}}}}{{\sqrt 2 }}\)     R1

\( = \frac{1}{{\sqrt 2 }}\)     AG

[3 marks]

b.

\({\cos ^2}\hat A – 2\cos \hat A\sin \hat A + {\sin ^2}\hat A = \frac{1}{2}\)     M1A1

\(1 – 2\sin \hat A\cos \hat A = \frac{1}{2}\)     M1A1

\(\sin 2\hat A = \frac{1}{2}\)     M1

\(2\hat A = 30^\circ \)     A1

angles in the triangle are 15° and 75°     A1A1

Note: Accept answers in radians.

[8 marks]

c.

\({\text{B}}{{\text{C}}^2} + {({\text{BC}} + 1)^2} = 2\)     M1A1

\(2{\text{B}}{{\text{C}}^2} + 2{\text{BC}} – 1 = 0\)     A1

\({\text{BC}} = \frac{{ -2 + \sqrt {12} }}{4}\left( { = \frac{{\sqrt 3  – 1}}{2}} \right)\)     M1A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }} = \frac{{\sqrt 3 – 1}}{{2\sqrt 2 }}\)     A1

\( = \frac{{\sqrt 6 – \sqrt 2 }}{4}\)     AG

[6 marks]

d.

EITHER

\(h = {\text{ABsin}}\hat A\)     M1

\( = ({\text{BC}} + 1)\sin \hat A\)     A1

\( = \frac{{\sqrt 3  + 1}}{2} \times \frac{{\sqrt 6 – \sqrt 2 }}{4} = \frac{{\sqrt 2 }}{4}\)     M1A1

OR

\(\tfrac{1}{2}AB.BC = \tfrac{1}{2}AC.h\)     M1

\(\frac{{\sqrt 3 – 1}}{2} \cdot \frac{{\sqrt {3 + 1} }}{2} = \sqrt {2h} \)     A1

\(\frac{2}{4} = \sqrt 2 h\)     M1

\(h = \frac{1}{{2\sqrt 2 }}\)     A1

[4 marks]

Question

Show that \(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \sec 2A + \tan 2A\) .

▶️Answer/Explanation

Markscheme

METHOD 1

\(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \sec 2A + \tan 2A\)

consider right hand side

\(\sec 2A + \tan 2A = \frac{1}{{\cos 2A}} + \frac{{\sin 2A}}{{\cos 2A}}\)     M1A1

\( = \frac{{{{\cos }^2}A + 2\sin A\cos A + {{\sin }^2}A}}{{{{\cos }^2}A – {{\sin }^2}A}}\)     A1A1 

Note: Award A1 for recognizing the need for single angles and A1 for recognizing \({\cos ^2}A + {\sin ^2}A = 1\) .

\( = \frac{{{{(\cos A + \sin A)}^2}}}{{(\cos A + \sin A)(\cos A – \sin A)}}\)     M1A1

\( = \frac{{\cos A + \sin A}}{{\cos A – \sin A}}\)     AG

 

METHOD 2

\(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \frac{{{{(\cos A + \sin A)}^2}}}{{(\cos A + \sin A)(\cos A – \sin A)}}\)     M1A1

\( = \frac{{{{\cos }^2}A + 2\sin A\cos A + {{\sin }^2}A}}{{{{\cos }^2}A – {{\sin }^2}A}}\)     A1A1 

Note: Award A1 for correct numerator and A1 for correct denominator.

 

\( = \frac{{1 + \sin 2A}}{{\cos 2A}}\)     M1A1

\( = \sec 2A + \tan 2A\)     AG

[6 marks]

 

 

Question

a. Show that \(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\) for \(0 < \alpha  < \frac{\pi }{2}\). [1]

b. Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 < \alpha  < \frac{\pi }{2}} \). [4]

▶️Answer/Explanation

Markscheme

EITHER

a.use of a diagram and trig ratios

eg,

\(\tan \alpha  = \frac{O}{A} \Rightarrow \cot \alpha  = \frac{A}{O}\)

from diagram, \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{A}{O}\)     R1

OR

use of \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{{\sin \left( {\frac{\pi }{2} – \alpha } \right)}}{{\cos \left( {\frac{\pi }{2} – \alpha } \right)}} = \frac{{\cos \alpha }}{{\sin \alpha }}\)     R1

THEN

\(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\)     AG

[1 mark]

a.

\(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x}  = [\arctan x]_{\tan \alpha }^{\cot \alpha }\)     (A1)

Note:     Limits (or absence of such) may be ignored at this stage.

\( = \arctan (\cot \alpha ) – \arctan (\tan \alpha )\)     (M1)

\( = \frac{\pi }{2} – \alpha  – \alpha \)     (A1)

\( = \frac{\pi }{2} – 2\alpha \)     A1

[4 marks]

Question

Given that \(sin(x+\frac{\pi}{3})=2cos(x-\frac{\pi}{6})\), find the values of tan x, cot x and cos x.

▶️Answer/Explanation

Ans
\(sin(x+\frac{\pi}{3})=2cons(x-\frac{\pi}{6} \Rightarrow sin x cos\frac{\po}{3}+sin\frac{\pi}{3}cos x=2(cosxcox\frac{\pi}{6}+sinxsin\frac{\pi}{6}\)
\(\Rightarrow \frac{1}{2}sinxcos\frac{\pi}{3}+\frac{\sqrt{3}}{2}cosx=2(\frac{\sqrt{3}}{2}cosx+\frac{1}{2}sinx)\)
\(\Rightarrow sinx +\sqrt{3}cos x =2\sqrt{3}cos x+2sinx\)
\(\Rightarrow -sinx =\sqrt{3}cosx\Rightarrow tanx =-\sqrt{3}\)
\(ctx=-\frac{1}{\sqrt{3}}\)
\(tan^2x+1=\frac{1}{cos^2x}\Rightarrow cos^2x=\frac{1}{4}\Rightarrow tan x =-\sqrt{3}\)
(indeed, the original equations has solution \(-\frac{\pi}{3}+2k\pi,\frac{2\pi}{3}+2k\pi \) and hence \(cos x = \pm \frac{1}{2})\)

Scroll to Top