IBDP Maths analysis and approaches Topic: SL 3.2 : The sine rule including the ambiguous case HL Paper 1

Question

In triangle ABC, AB = 9 cm , AC = 12 cm , and \(\hat B\) is twice the size of \({\hat C}\) .

Find the cosine of \({\hat C}\) .

▶️Answer/Explanation

Markscheme

\(\frac{9}{{\sin C}} = \frac{{12}}{{\sin B}}\)     (M1)

\(\frac{9}{{\sin C}} = \frac{{12}}{{\sin 2C}}\)     A1

Using double angle formula \(\frac{9}{{\sin C}} = \frac{{12}}{{2\sin C\cos C}}\)     M1

\( \Rightarrow 9(2\sin C\cos C) = 12\sin C\)

\( \Rightarrow 6\sin C(3\cos C – 2) = 0\,\,\,\,\,{\text{or equivalent}}\)     (A1)

\((\sin C \ne 0)\)

\( \Rightarrow \cos C = \frac{2}{3}\)     A1

[5 marks]

Question

In the triangle PQR, PQ = 6 , PR = k and \({\rm{P\hat QR}} = 30^\circ \) .

a.For the case k = 4 , find the two possible values of QR.[4]

b.Determine the values of k for which the conditions above define a unique triangle.[3]

▶️Answer/Explanation

Markscheme

attempt to apply cosine rule     M1

\({4^2} = {6^2} + {\text{Q}}{{\text{R}}^2} – 2 \cdot {\text{QR}} \cdot 6\cos 30^\circ\) ( or \({\text{Q}}{{\text{R}}^2} – 6\sqrt 3 {\text{ QR}} + 20 = 0\) )     A1

\({\text{QR}} = 3\sqrt 3  + \sqrt 7 {\text{ or QR}} = 3\sqrt 3  – \sqrt 7 \)     A1A1

[4 marks]

a.

METHOD 1

\(k \geqslant 6\)     A1

\(k = 6\sin 30^\circ  = 3\)     M1A1

Note: The M1 in (b) is for recognizing the right-angled triangle case.

 

METHOD 2

\(k \geqslant 6\)     A1

use of discriminant: \(108 – 4(36 – {k^2}) = 0\)     M1

k = 3     A1

Note: k = ±3 is M1A0.

 

[3 marks]

b.

Question

In triangle \({\text{ABC, BC}} = \sqrt 3 {\text{ cm}}\), \({\rm{A\hat BC}} = \theta \) and \({\rm{B\hat CA}} = \frac{\pi }{3}\).

a.Show that length \({\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta  + \sin \theta }}\).[4]

b.Given that \(AB\) has a minimum value, determine the value of \(\theta \) for which this occurs.[4]

▶️Answer/Explanation

Markscheme

any attempt to use sine rule     M1

\(\frac{{{\text{AB}}}}{{\sin \frac{\pi }{3}}} = \frac{{\sqrt 3 }}{{\sin \left( {\frac{{2\pi }}{3} – \theta } \right)}}\)     A1

\( = \frac{{\sqrt 3 }}{{\sin \frac{{2\pi }}{3}\cos \theta  – \cos \frac{{2\pi }}{3}\sin \theta }}\)     A1

Note:     Condone use of degrees.

\( = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta  + \frac{1}{2}\sin \theta }}\)     A1

\(\frac{{{\text{AB}}}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta  + \frac{1}{2}\sin \theta }}\)

\(\therefore {\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta  + \sin \theta }}\)     AG

[4 marks]

a.

METHOD 1

\(({\text{AB}})’ = \frac{{ – 3\left( { – \sqrt 3 \sin \theta  + \cos \theta } \right)}}{{{{\left( {\sqrt 3 \cos \theta  + \sin \theta } \right)}^2}}}\)     M1A1

setting \(({\text{AB}})’ = 0\)     M1

\(\tan \theta  = \frac{1}{{\sqrt 3 }}\)

\(\theta  = \frac{\pi }{6}\)     A1

METHOD 2

\({\text{AB}} = \frac{{\sqrt 3 \sin \frac{\pi }{3}}}{{\sin \left( {\frac{{2\pi }}{3} – \theta } \right)}}\)

\(AB\) minimum when \(\sin \left( {\frac{{2\pi }}{3} – \theta } \right)\) is maximum     M1

\(\sin \left( {\frac{{2\pi }}{3} – \theta } \right) = 1\)     (A1)

\(\frac{{2\pi }}{3} – \theta  = \frac{\pi }{2}\)     M1

\(\theta  = \frac{\pi }{6}\)     A1

METHOD 3

shortest distance from \(B\) to \(AC\) is perpendicular to \(AC\)     R1

\(\theta  = \frac{\pi }{2} – \frac{\pi }{3} = \frac{\pi }{6}\)     M1A2

[4 marks]

Total [8 marks]

b.

Question

The following diagram shows the triangle ABC where \({\text{AB}} = 2,{\text{ AC}} = \sqrt 2 \) and \({\rm{B\hat AC}} = 15^\circ \).

a.Expand and simplify \({\left( {1 – \sqrt 3 } \right)^2}\).[1]

b.By writing \(15^\circ \) as \(60^\circ  – 45^\circ \) find the value of \(\cos (15^\circ )\).[3]

c.Find BC in the form \(a + \sqrt b \) where \(a,{\text{ }}b \in \mathbb{Z}\).[4]

▶️Answer/Explanation

Markscheme

\({\left( {1 – \sqrt 3 } \right)^2} = 4 – 2\sqrt 3 \)    A1

Note:     Award A0 for \(1 – 2\sqrt 3  + 3\).

[1 mark]

a.

\(\cos (60^\circ  – 45^\circ ) = \cos (60^\circ )\cos (45^\circ ) + \sin (60^\circ )\sin (45^\circ )\)    M1

\( = \frac{1}{2} \times \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 3 }}{2} \times \frac{{\sqrt 2 }}{2}{\text{ }}\left( {{\text{or }}\frac{1}{2} \times \frac{1}{{\sqrt 2 }} + \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }}} \right)\)    (A1)

\( = \frac{{\sqrt 2  + \sqrt 6 }}{4}{\text{ }}\left( {{\text{or }}\frac{{1 + \sqrt 3 }}{{2\sqrt 2 }}} \right)\)    A1

[3 marks]

b.

\(B{C^2} = 2 + 4 – 2 \times \sqrt 2  \times 2\cos (15^\circ )\)    M1

\( = 6 – \sqrt 2 \left( {\sqrt 2  + \sqrt 6 } \right)\)

\( = 4 – \sqrt {12} {\text{ }}\left( { = 4 – 2\sqrt 3 } \right)\)    A1

\(BC =  \pm \left( {1 – \sqrt 3 } \right)\)    (M1)

\(BC =  – 1 + \sqrt 3 \)    A1

Note:     Accept \(BC = \sqrt 3  – 1\).

Note:     Award M1A0 for \(1 – \sqrt 3 \).

Note:     Valid geometrical methods may be seen.

[4 marks]

c.
Scroll to Top