Question:
Consider the complex numbers z1 = 1 + bi and z2 = (1 – b2) – 2bi, where b ∈ R, b ≠ 0.
(a) Find an expression for z1z2 in terms of b.
▶️Answer/Explanation
Ans: z1z2 = (1 + bi) ((1-b2) – (2b)i)
= (1-b2 – 2i2b2) + i (-2b + b – b3)
= (1 + b2) + i (-b – b3)
Note: Award A1 for 1+ b2 and A1 for − bi – b3i .
(b) Hence, given that arg (z1 z2) = \(\frac{\pi }{4}\) , find the value of b.
▶️Answer/Explanation
Ans: arg (z1z2) = arctan \(\left ( \frac{-b-b^{3}}{1 + b^{2}} \right )= \frac{\pi }{4}\)
EITHER
arctan (-b) = \(\frac{\pi }{4}\) (since 1+b2 ≠, 0 for b ∈ R)
OR
-b – b3 = 1 + b2 (or equivalent)
THEN
b =−1
Question:
Consider the complex numbers z1 = 1 + bi and z2 = (1 – b2) – 2bi, where b ∈ R, b ≠ 0.
(a) Find an expression for z1z2 in terms of b.
▶️Answer/Explanation
Ans: z1z2 = (1 + bi) ((1-b2) – (2b)i)
= (1-b2 – 2i2b2) + i (-2b + b – b3)
= (1 + b2) + i (-b – b3)
Note: Award A1 for 1+ b2 and A1 for − bi – b3i .
(b) Hence, given that arg (z1 z2) = \(\frac{\pi }{4}\) , find the value of b.
▶️Answer/Explanation
Ans: arg (z1z2) = arctan \(\left ( \frac{-b-b^{3}}{1 + b^{2}} \right )= \frac{\pi }{4}\)
EITHER
arctan (-b) = \(\frac{\pi }{4}\) (since 1+b2 ≠, 0 for b ∈ R)
OR
-b – b3 = 1 + b2 (or equivalent)
THEN
b =−1
Question
Consider the complex numbers Z1 = cos \(\frac{11\pi }{12}+sin\frac{11\pi }{12}\) and Z2 = cos \(\frac{\pi }{6}+isin\frac{\pi }{6}\)
(a) (i) Find \(\frac{Z_1}{Z_2}\)
▶️Answer/Explanation
Ans: \(\frac{z_{1}}{z_{2}}= cos(\frac{11\pi }{12}-\frac{\pi }{6})+i sin (\frac{11\pi }{12}-\frac{\pi }{6}) = cos \frac{3\pi }{4}+i sin \frac{3\pi }{4}\)
(ii) Find \(\frac{Z_2}{Z_1}\) [3]
▶️Answer/Explanation
Ans: \(\frac{z_{2}}{z_{1}} = cos\frac{3\pi }{4}-isin \frac{3\pi }{4}\)
(b) \(\frac{Z_1}{Z_2}\) and \(\frac{Z_2}{Z_1}\) bare represented by three points O, A and B respectively on an Argand diagram. Determine the area of the triangle OAB. [2]
▶️Answer/Explanation
Ans: valid attempt to calculate area of their triangle (angle between OA and OB is \(\frac{\pi }{2}\Rightarrow area (=\frac{1}{2}\times 1\times 1)=\frac{1}{2}\)
Question
If \({z_1} = a + a\sqrt 3 i\) and \({z_2} = 1 – i\), where a is a real constant, express \({z_1}\) and \({z_2}\) in the form \(r\,{\text{cis}}\,\theta \), and hence find an expression for \({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6}\) in terms of a and i.
▶️Answer/Explanation
Markscheme
\({z_1} = 2a{\text{cis}}\left( {\frac{\pi }{3}} \right){\text{, }}{z_2} = \sqrt 2 {\text{ cis}}\left( { – \frac{\pi }{4}} \right)\) M1 A1 A1
EITHER
\({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6} = \frac{{{2^6}{a^6}{\text{cis(0)}}}}{{{{\sqrt 2 }^6}{\text{cis}}\left( {\frac{\pi }{2}} \right)}}\left( { = 8{a^6}{\text{cis}}\left( { – \frac{\pi }{2}} \right)} \right)\) M1 A1 A1
OR
\({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6} = {\left( {\frac{{2a}}{{\sqrt 2 }}{\text{cis}}\left( {\frac{{7\pi }}{{12}}} \right)} \right)^6}\) M1 A1
\( = 8{a^6}{\text{cis}}\left( { – \frac{\pi }{2}} \right)\) A1
THEN
\( = – 8{a^6}{\text{i}}\) A1
Note: Accept equivalent angles, in radians or degrees.
Accept alternate answers without cis e.g. \({\text{ = }}\frac{{8{a^6}}}{{\text{i}}}\)
[7 marks]
Question
Given that z is the complex number \(x + {\text{i}}y\) and that \(\left| {\,z\,} \right| + z = 6 – 2{\text{i}}\) , find the value of x
and the value of y .
▶️Answer/Explanation
Markscheme
\(\sqrt {{x^2} + {y^2}} + x + y{\text{i}} = 6 – 2{\text{i}}\) (A1)
equating real and imaginary parts M1
\(y = – 2\) A1
\(\sqrt {{x^2} + 4} + x = 6\) A1
\({x^2} + 4 = {(6 – x)^2}\) M1
\( – 32 = – 12x \Rightarrow x = \frac{8}{3}\) A1
[6 marks]
Question
Given that \((4 – 5{\text{i}})m + 4n = 16 + 15{\text{i}}\) , where \({{\text{i}}^2} = – 1\), find m and n if
a. m and n are real numbers;[3]
▶️Answer/Explanation
Ans: attempt to equate real and imaginary parts M1
equate real parts: \(4m + 4n = 16\); equate imaginary parts: \( -5m = 15\) A1
\( \Rightarrow m = -3,{\text{ }}n = 7\) A1
[3 marks]
▶️Answer/Explanation
\( \Rightarrow (4 – 5{\text{i}})(x + {\text{i}}y) + 4(x – {\text{i}}y) = 16 + 15{\text{i}}\)
\( \Rightarrow 4x – 5{\text{i}}x + 4{\text{i}}y + 5y + 4x – 4{\text{i}}y = 16 + 15{\text{i}}\)
attempt to equate real and imaginary parts M1
\(8x + 5y = 16,{\text{ }} -5x = 15\) A1
\( \Rightarrow x = -3,{\text{ }}y = 8\) A1
\(( \Rightarrow m = -3 + 8{\text{i}},{\text{ }}n = -3 – 8{\text{i}})\)
[4 marks]
Question
Consider the complex numbers
a. \({z_1} = 2\sqrt 3 {\text{cis}}\frac{{3\pi }}{2}\) and \({z_2} = – 1 + \sqrt 3 {\text{i }}\) .
(i) Write down \({z_1}\) in Cartesian form.
▶️Answer/Explanation
Ans: \({z_1} = 2\sqrt 3 {\text{cis}}\frac{{3\pi }}{2} \Rightarrow {z_1} = – 2\sqrt 3 {\text{i}}\) A1
▶️Answer/Explanation
Ans: \({z_1} + {z_2} = – 2\sqrt 3 {\text{i}} – 1 + \sqrt 3 {\text{i}} = – 1 – \sqrt 3 {\text{i}}\) A1
\({({z_1} + {z_2})^ * } = – 1 + \sqrt 3 {\text{i}}\) A1
[3 marks]
b. (i) Write \({z_2}\) in modulus-argument form.
▶️Answer/Explanation
Ans: \(\left| {{z_2}} \right| = 2\)
▶️Answer/Explanation
Ans: attempt to use De Moivre’s theorem M1
(i) if \({z^2} = {(1 + {z_2})^2}\);
▶️Answer/Explanation
Ans: METHOD 1
\({z^2} = {\left( {1 – 1 + \sqrt 3 {\text{i}}} \right)^2} = – 3\left( { \Rightarrow z = \pm \sqrt 3 {\text{i}}} \right)\) M1
\(z = \sqrt 3 \,{\text{cis}}\frac{\pi }{2}{\text{ or }}{z_1} = \sqrt 3 \,{\text{cis}}\frac{{3\pi }}{2}\left( { = \sqrt 3 \,{\text{cis}}\left( {\frac{{ – \pi }}{2}} \right)} \right)\) A1A1
so \(r = \sqrt 3 {\text{ and }}\theta = \frac{\pi }{2}{\text{ or }}\theta = \frac{{3\pi }}{2}\left( { = \frac{{ – \pi }}{2}} \right)\)
Note: Accept \(r\,{\text{cis}}(\theta )\) form.
METHOD 2
\({z^2} = {\left( {1 – 1 + \sqrt 3 {\text{i}}} \right)^2} = – 3 \Rightarrow {z^2} = 3{\text{cis}}\left( {(2n + 1)\pi } \right)\) M1
\({r^2} = 3 \Rightarrow r = \sqrt 3 \) A1
\(2\theta = (2n + 1)\pi \Rightarrow \theta = \frac{\pi }{2}{\text{ or }}\theta = \frac{{3\pi }}{2}{\text{ (as }}0 \leqslant \theta < 2\pi )\) A1
Note: Accept \(r\,{\text{cis}}(\theta )\) form.
▶️Answer/Explanation
Ans: METHOD 1
\(z = – \frac{1}{{2{\text{cis}}\frac{{2\pi }}{3}}} \Rightarrow z = \frac{{{\text{cis}}\pi }}{{2{\text{cis}}\frac{{2\pi }}{3}}}\) M1
\( \Rightarrow z = \frac{1}{2}{\text{cis}}\frac{\pi }{3}\)
so \(r = \frac{1}{2}{\text{ and }}\theta = \frac{\pi }{3}\) A1A1
METHOD 2
\({z_1} = – \frac{1}{{ – 1 + \sqrt 3 {\text{i}}}} \Rightarrow {z_1} = – \frac{{ – 1 – \sqrt 3 {\text{i}}}}{{\left( { – 1 + \sqrt 3 {\text{i}}} \right)\left( { – 1 – \sqrt 3 {\text{i}}} \right)}}\) M1
\(z = \frac{{1 + \sqrt 3 {\text{i}}}}{4} \Rightarrow z = \frac{1}{2}{\text{cis}}\frac{\pi }{3}\)
so \(r = \frac{1}{2}{\text{ and }}\theta = \frac{\pi }{3}\) A1A1
[6 marks]
▶️Answer/Explanation
Ans: \(\frac{{{z_1}}}{{{z_2}}} = \sqrt 3 \,{\text{cis}}\frac{{5\pi }}{6}\) (A1)
\({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^n} = {\sqrt 3 ^n}{\text{cis}}\frac{{5n\pi }}{6}\) A1
equating imaginary part to zero and attempting to solve M1
obtain n = 12 A1
Note: Working which only includes the argument is valid.
[4 marks]
Question
(z + 2i) is a factor of 2z3 – 3z2 + 8z – 12. Find the other two factors.
▶️Answer/Explanation
If \((z + 2i)\) is a factor then \((z – 2i)\) is also a factor. \((z+2i)(z-2i)=(z^{2}+4)\)
The other factor is (2z3 – 3z2 + 8z – 12) ÷ (z2 + 4) = (2z – 3)
The other two factors are (z – 2i) and (2z–3).