IIT JEE Main Chemistry Study Materials Chapter Wise

JEE Main 2021 Chemistry Syllabus

The chemistry section of JEE Main comprises numerical as well as theoretical questions. In JEE Main 2019, Chemical Bonding in Organic Chemistry, Halogen Derivative in  Organic Chemistry and Ionic Equilibrium etc were given the highest weightage. The entire chemistry syllabus in JEE Main is spread over three sections.

  • Physical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Take a look at JEE Main January 2020 Paper 1 Syllabus for Chemistry below.

Units

Topics

 Section A: Physical Chemistry

Unit 1: Some Basic Concepts In Chemistry
  • Matter and its nature, Dalton’s atomic theory
  • Concept of atom, molecule, element and compound
  • Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis
  • Laws of chemical combination
  • Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae
  • Chemical equations and stoichiometry
Unit 2: States Of MatterClassification of matter into solid, liquid and gaseous states.
  • Gaseous State: Measurable properties of gases
  • Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure
  • Concept of Absolute scale of temperature; Ideal gas equation
  • Kinetic theory of gases (only postulates)
  • Concept of average, root mean square and most probable velocities
  • Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation
Liquid State: Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).
  • Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea)
  • Bragg’s Law and its applications
  • Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids
  • Electrical, magnetic and dielectric properties
Unit 3: Atomic Structure
  • Thomson and Rutherford atomic models and their limitations
  • Nature of electromagnetic radiation, photoelectric effect
  • Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model
  • Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle.
  • Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, concept of atomic orbitals as one electron wave functions
  • various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance
  • shapes of s, p and d – orbitals, electron spin and spin quantum number
  • Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.
Unit 4: Chemical Bonding And Molecular StrucureKossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.
 Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.
 
  • Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment
  • Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules
  • Quantum mechanical approach to covalent bonding: Valence bond theory – Its important features, concept of hybridization involving s, p and d orbitals
  • Resonance
    Molecular Orbital Theory – Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.
Unit 5: Chemical ThermodynamicsFundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.
  • First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity
  • Hess’s law of constant heat summation
  • Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution
  • Second law of thermodynamics
  • Spontaneity of processes
  • DS of the universe and DG of the system as criteria for spontaneity, Dgo (Standard Gibbs energy change) and equilibrium constant
Unit 6: Solutions
  • Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions
  • Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure
  • Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance
Unit 7: EquilibriumMeaning of equilibrium, concept of dynamic equilibrium.
 
  • Equilibria involving physical processes: Solid -liquid, liquid – gas and solid – gas equilibria, Henry’s law, general characterics of equilibrium involving physical processes.
  • Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of DG and DGo in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier’s principle.
 Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted – Lowry and Lewis) and their ionization, acid-base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.
Unit 8: Redox Reactions And ElectrochemistryElectronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.
Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch’s law and its applications.
  • Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement
  • Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change
  • Dry cell and lead accumulator; Fuel cells.
Unit 9 : Chemical Kinetics
  • Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst
  • elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms ofzero and first-order reactions, their characteristics and half-lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).
Unit 10: Surface ChemistryAdsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
  • Colloidal state- distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic
  • multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids – Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation
  • Emulsions and their characteristics

Section B: Inorganic Chemistry

Unit 11: Classificaton Of Elements And Periodicity In PropertiesModem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
Unit 12: General Principles And Processes Of Isolation Of MetalsModes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.
Unit 13: Hydrogen
  • Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen
  • Physical and chemical properties of water and heavy water
  • Structure, preparation, reactions and uses of hydrogen peroxide
  • Hydrogen as a fuel
Unit 14: S – Block Elements (Alkali And Alkaline Earth Metals)Group – 1 and 2 Elements: General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.
 Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.
Unit 15: P – Block Elements

Group – 13 to Group 18 Elements

General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

 

Groupwise study of the p – block elements

  • Group – 13: Preparation, properties and uses of boron and aluminium; properties of boric acid, diborane, boron trifluoride, aluminium chloride and alums.
  • Group – 14: Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites.
  • Group – 15: Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of phosphorus.
  • Group – 16: Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
  • Group – 17: Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.
  • Group –18Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.
UNIT 16: D – And F – BLOCK ELEMENTSTransition Elements: General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4 .
Inner Transition Elements: Lanthanoids – Electronic configuration, oxidation states and lanthanoid contraction.
Actinoids – Electronic configuration and oxidation states.
Unit 17: Co-Ordination Compounds
  • Introduction to co-ordination compounds, Werner’s theory
  • ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism
  • Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).
Unit 18: Environmental Chemistry
  • Environmental pollution – Atmospheric, water and soil.
  • Atmospheric pollution – Tropospheric and Stratospheric
  • Tropospheric pollutants – Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Greenhouse effect and Global warming; Acid rain;
  • Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.
  • Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer – its mechanism and effects.
  • Water Pollution – Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.
  • Soil pollution – Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention. Strategies to control environmental pollution.

Section C: Organic Chemistry

Unit 19: Purification And Characterisation Of Organic CompoundsPurification – Crystallization, sublimation, distillation, differential extraction and chromatography – principles and their applications
Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens.
Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.
Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.
Unit 20: Some Basic Principles Of Organic ChemistryTetravalency of carbon; Shapes of simple molecules – hybridization (s and p); Classification of organic compounds based on functional groups: – C = C – , – C h C – and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism – structural and stereoisomerism.
 Nomenclature (Trivial and IUPAC)
Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.
Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance and hyperconjugation.
Unit 21: HydrocarbonsClassification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.
Alkanes – Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes.
Alkenes – Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization.
Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.
Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of functional group in mono-substituted benzene.
Unit 22: Organic Compounds Containing HalogensGeneral methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions.
Uses; Environmental effects of chloroform & iodoform.
Unit 23: Organic Compounds Containing OxygenGeneral methods of preparation, properties, reactions and uses.
Alcohols, Phenols And Ethers
  • Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.
  • Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer – Tiemann reaction.
  • Ethers: Structure.
  • Aldehyde and Ketones: Nature of carbonyl group
  • Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones
  • Important reactions such as – Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of r – hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.
Carboxylic AcidsAcidic strength and factors affecting it.
Unit 24: Organic Compounds Containing Nitrogen
  • General methods of preparation, properties, reactions and uses.
  • Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.
  • Diazonium Salts: Importance in synthetic organic chemistry.
Unit 25: Polymers
  • General introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization
  • Natural and synthetic rubber and vulcanization
  • some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.
UNIT 26: Biomolecules
  • General introduction and importance of biomolecules.
  • Carbohydrates – Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosacchorides (sucrose, lactose and maltose).
  • Proteins – Elementary Idea of r – amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
  • Vitamins – Classification and functions.
  • Nucleic Acids – Chemical constitution of DNA and RNA. Biological functions of nucleic acids.
UNIT 27: Chemistry in Everyday LifeChemicals in medicines – Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins – their meaning and common examples.
Chemicals in food – Preservatives, artificial sweetening agents – common examples. Cleansing agents – Soaps and detergents, cleansing action.
UNIT 28: PRINCIPLES RELATED TO PRACTICAL CHEMISTRYDetection of extra elements (N,S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.
  • Chemistry involved in the preparation of the following: Inorganic compounds: Mohr’s salt, potash alum.
  • Organic compounds: Acetanilide, pnitroacetanilide, aniline yellow, iodoform.
Chemistry involved in the titrimetric excercises – Acids bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4.
Chemical principles involved in the qualitative salt analysis: Cations – Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+. Anions- CO3 2-, S2-, SO4 2-, NO2, NO3, CI , Br, I. (Insoluble salts excluded).
Chemical principles involved in the following experiments:Enthalpy of solution of CuSO4
Enthalpy of neutralization of strong acid and strong base.
Preparation of lyophilic and lyophobic sols.
Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature.

Best Books for JEE Main Chemistry

Physical Chemistry

1. Physical Chemistry for Competitions (OP Tandon)Physical Chemistry IIT JEE
One of the most popular books for Physical Chemistry, OP Tandon’s book is used incessantly for all engineering entrance exams. The book covers all topics in detail. You’ll gain both in case of theoretical and practical type questions. The practice papers and solved questions are a huge benefit in this book. The best thing is, you also get OP Tandon books for Organic and Inorganic Chemistry.

IIT JEE Chemistry book 2. Modern Approach to Chemical Calculations (RC Mukherjee)
This one’s by far the best bet for Physical Chemistry. Well-explained topics and concepts, and varied styles of numerical questions in this book make it a one-stop solutions for JEE preparation of Physical Chemistry. The entire JEE syllabus for Physical Chemistry can be easily covered with this book. Other beneficial features include revision notes and solved questions in the end. The mole concept has been described well and questions are explained using the same.

3. Physical Chemistry – P. BahadurPhysical Chemistry for JEE preparation
It’s one of the most highly recommended books for physical chemistry and for numerical problems for any engineering entrance exam. The set of problems in the book are very exhaustive. The problems available are from state level engineering entrance exams to JEE for each chapter in the book.

JEE Advanced Physical Chemistry book 4. Physical Chemistry – K.S. Verma (Cengage Publication)
Physical Chemistry for JEE is a comprehensive guide for students who are studying for the Physical Chemistry for JEE. While its illustrative and solved examples will facilitate easy mastering of the concepts and their applications, an array of solved problems will expose the students to the variety and nature of questions that they can expect to face in the examination. The coverage and features of this series of books make it highly useful for all those preparing for JEE Advanced and aspiring to become engineers.

Inorganic Chemistry

1. A Textbook of Inorganic Chemistry (RK Gupta)Inorganic Chemistry book for JEE prep
The theory is very well-explained for all the topics and chapters. There is good scope for revision and quick recaps with every chapter. Practise questions are available at the end of every chapter as well as the end of the book too, hence strengthens students’ preparation. The type of questions included are comprehension, reasoning and assertion type of questions, MCQ’s, short answers-questions and analytical questions.

Inorganic Chemistry IIT JEE preparation 2. Concise Inorganic Chemistry (JD Lee)
JD Lee’s Chemistry book is among the most popular for Inorganic Chemistry, not just for JEE, but for other engineering entrances as well. The essentials are well-covered, and the practice questions are in abundance. The format of questions in the book includes MCQs, assertive -type and single choice questions. The practical and theory parts in the book are well-balanced too.

Organic Chemistry

1. Organic Chemistry for Competitions (OP Tandon)Organic Chemistry for JEE prep
The book gives you a lot of scope to learn and revise. The text is well-formatted and revised to match the current trends of of the examination. The text is precise and short; hence, easy to understand. You can know and practise the most recent questions for Organic Chemistry for JEE. The type of questions included in the practice part include Multiple Choice Questions, reasoning and matching options.

Organic Chemistry book for JEE prep2. Organic Chemistry (Morrison and Boyd)
The book covers almost all the topics in the JEE syllabus in good detail. You can strengthen your knowledge on Molecular Structure and other important topics from Organic Chemistry. Students prefer preparing Organic Chemistry for JEE with Morrison and Boyd owing to the interesting way in which even the most complex topics are made understandable. There are no substantial questions for practice purposes in the book, but it is ideal for understanding the concepts of Organic Chemistry for JEE.

3. Organic Chemistry – Himanshu Pandey (GRB Publication)Organic Chemistry book IIT JEE preparation
This is a comprehensive guide for Organic Chemistry and is essential for both the JEE Main and Advanced exams. Every chapter contains the entire spectrum of objective questions as adopted by IIT JEE. Teachers and students will find all type of problems that covers the core curriculum of typical organic chemistry. Maximum problems in this book are designed by combining two or more concepts. Answering them need thinking and deep knowledge.

IIT JEE Organic Chemistry book 4. Organic Chemistry – M. S. Chauhan (Balaji Publication)
The book aims at three problematic key areas of the organic chemistry – understanding of mechanics, visualization of structures and problem solving. The reactions are well illustrated and elaborate answers with stepwise explanations of their mechanisms are provided. These are combined with concise text helping students to acquire the fundamental concepts of the subject.

JEE Main Topicwise Weightage for Chemistry

Below is JEE Main Chemistry important topics and number of questions asked in the examination.

TopicsNo of QuestionsMarks
Transition Elements and Coordination Chemistry312
Periodic table and Representative Elements312
Thermodynamics And Gaseous State28
Atomic Structure28
Chemical Bonding28
Chemical And Ionic Equilibrium28
Solid State And Surface Chemistry28
Nuclear Chemistry And Environment28
Mole Concept14
Redox Reaction14
Electrochemistry14
Chemical Kinetics14
Solution and Colligative Properties14
General Organic Chemistry14
Stereochemistry14
Hydrocarbon14
Alkyl Halides14
Carboxylic Acid and their Derivatives14
Carbohydrates, amino acid and Polymers14
Aromatic Compounds14
Scroll to Top