IB DP Math AA Topic : AHL 1.13: Modulus–argument (polar) form-IB Style Questions – HL Paper 2

Question

Consider the complex numbers  z = 2 \((cos\frac{\pi }{5}+isin\frac{\pi }{5})\) and w = 8 \((cos\frac{2k\pi }{5}- isin\frac{2k\pi }{5})\) where \(k\in \mathbb{Z}^+\)

    1. Find the modulus of \(zw\). [1]

    2. Find the argument of \(zw\) in terms of \(k\) . [2]

      Suppose that \(zw\in \mathbb{Z}\) .

    3. (i) Find the minimum value of \(k\) .

      (ii) For the value of k found in part (i), find the value of \(zw\)  . [4]

▶️Answer/Explanation

Ans: 

(a) (|zw|=)16

(b)

attempt to find arg (z) +arg (w)

arg (zw)=arg (z)+arg (w)

= \(\frac{\pi}{5}-\frac{2k\pi}{5}=\frac{(1-2k)\pi}{5}\)

(c)

(i)

zw \(\varepsilon Z\Leftrightarrow arg (zw)\) is a multiple of \(\pi\)

\(\Leftrightarrow 1-2k\) is a multiple of 5

k =3

(ii) zw =16 \(cos(-\pi)+isin(-\pi)\)- 16

Question

Consider the complex number \(z = \frac{{2 + 7{\text{i}}}}{{6 + 2{\text{i}}}}\).

a.Express \(z\) in the form \(a + {\text{i}}b\), where \(a,\,b \in \mathbb{Q}\).[2]

b.Find the exact value of the modulus of \(z\).[2]

c.Find the argument of \(z\), giving your answer to 4 decimal places.[2]

▶️Answer/Explanation

Markscheme

\(z = \frac{{\left( {2 + 7{\text{i}}} \right)}}{{\left( {6 + 2{\text{i}}} \right)}} \times \frac{{\left( {6 – 2{\text{i}}} \right)}}{{\left( {6 – 2{\text{i}}} \right)}}\) (M1)

\( = \frac{{26 + 38{\text{i}}}}{{40}} = \left( {\frac{{13 + 19{\text{i}}}}{{20}} = 0.65 + 0.95{\text{i}}} \right)\) A1

[2 marks]

a.

attempt to use \(\left| z \right| = \sqrt {{a^2} + {b^2}} \) (M1)

\(\left| z \right| = \sqrt {\frac{{53}}{{40}}} \left( { = \frac{{\sqrt {530} }}{{20}}} \right)\) or equivalent A1

Note: A1 is only awarded for the correct exact value.

[2 marks]

b.

EITHER

arg \(z\) = arg(2 + 7i) − arg(6 + 2i) (M1)

OR

arg \(z\) = arctan\(\left( {\frac{{19}}{{13}}} \right)\) (M1)

THEN

arg \(z\) = 0.9707 (radians) (= 55.6197 degrees) A1

Note: Only award the last A1 if 4 decimal places are given.

[2 marks]

c.

Examiners report

[N/A]

a.

[N/A]

b.

[N/A]

c.

Question

(a)     Solve the equation \({z^3} = – 2 + 2{\text{i}}\), giving your answers in modulus-argument form.

(b)     Hence show that one of the solutions is 1 + i when written in Cartesian form.

▶️Answer/Explanation

Markscheme

(a)     \({z^3} = 2\sqrt 2 {{\text{e}}^{\frac{{3\pi {\text{i}}}}{4}}}\)     (M1)(A1)

\({z_1} = \sqrt 2 {{\text{e}}^{\frac{{\pi {\text{i}}}}{4}}}\)     A1

adding or subtracting \(\frac{{2\pi {\text{i}}}}{3}\)     M1

\({z_2} = \sqrt 2 {{\text{e}}^{\frac{{\pi {\text{i}}}}{4} + \frac{{2\pi {\text{i}}}}{3}}} = \sqrt 2 {{\text{e}}^{\frac{{11\pi {\text{i}}}}{{12}}}}\)     A1

\({z_3} = \sqrt 2 {{\text{e}}^{\frac{{\pi {\text{i}}}}{4} – \frac{{2\pi {\text{i}}}}{3}}} = \sqrt 2 {{\text{e}}^{ – \frac{{5\pi {\text{i}}}}{{12}}}}\)     A1

Notes: Accept equivalent solutions e.g. \({z_3} = \sqrt 2 {{\text{e}}^{\frac{{19\pi {\text{i}}}}{{12}}}}\)

Award marks as appropriate for solving \({(a + b{\text{i}})^3} = – 2 + 2{\text{i}}\).

Accept answers in degrees.

 

(b)     \(\sqrt 2 {{\text{e}}^{\frac{{\pi {\text{i}}}}{4}}}{\text{ }}\left( { = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }} + \frac{{\text{i}}}{{\sqrt 2 }}} \right)} \right)\)     A1

= 1 + i     AG

Note: Accept geometrical reasoning.

 

[7 marks]

Examiners report

Many students incorrectly found the argument of \({z^3}\) to be \(\arctan \left( {\frac{2}{{ – 2}}} \right) = – \frac{\pi }{4}\). Of those students correctly finding one solution, many were unable to use symmetry around the origin, to find the other two. In part (b) many students found the cube of 1 + i which could not be awarded marks as it was not “hence”.

Question

The complex numbers \(u\) and \(v\) are represented by point A and point B respectively on an Argand diagram.

Point A is rotated through \(\frac{\pi }{2}\) in the anticlockwise direction about the origin O to become point \({\text{A}}’\). Point B is rotated through \(\frac{\pi }{2}\) in the clockwise direction about O to become point \({\text{B}}’\).

a.Consider \(z = r(\cos \theta  + {\text{i}}\sin \theta ),{\text{ }}z \in \mathbb{C}\).

Use mathematical induction to prove that \({z^n} = {r^n}(\cos n\theta  + {\text{i}}\sin n\theta ),{\text{ }}n \in {\mathbb{Z}^ + }\).[7]

 
b.Given \(u = 1 + \sqrt 3 {\text{i}}\) and \(v = 1 – {\text{i}}\),

(i)     express \(u\) and \(v\) in modulus-argument form;

(ii)     hence find \({u^3}{v^4}\).[4]

c.Plot point A and point B on the Argand diagram.[1]

d.Find the area of triangle O\({\text{A}}’\)\({\text{B}}’\).[3]

e.Given that \(u\) and \(v\) are roots of the equation \({z^4} + b{z^3} + c{z^2} + dz + e = 0\), where \(b,{\text{ }}c,{\text{ }}d,{\text{ }}e \in \mathbb{R}\),

find the values of \(b,{\text{ }}c,{\text{ }}d\) and \(e\).[5]

 
▶️Answer/Explanation

Markscheme

let \({\text{P}}(n)\) be the proposition \({z^n} = {r^n}(\cos n\theta  + {\rm{i}}\sin n\theta ),n \in {¢^ + }\)

let \(n = 1 \Rightarrow \)

\({\text{LHS}} = r(\cos \theta  + {\text{i}}\sin \theta )\)

\({\text{RHS}} = r(\cos \theta  + {\text{i}}\sin \theta ),{\text{ }}\therefore {\text{P}}(1)\) is true     R1

assume true for \(n = k \Rightarrow {r^k}{(\cos \theta  + {\text{i}}\sin \theta )^k} = {r^k}\left( {\cos (k\theta ) + {\text{i}}\sin (k\theta )} \right)\)     M1

Note:     Only award the M1 if truth is assumed.

now show \(n = k\) true implies \(n = k + 1\) also true

\({r^{k + 1}}{(\cos \theta  + {\text{i}}\sin \theta )^{k + 1}} = {r^{k + 1}}{(\cos \theta  + {\text{i}}\sin \theta )^k}(\cos \theta  + {\text{i}}\sin \theta )\)     M1

\( = {r^{k + 1}}\left( {\cos (k\theta ) + {\text{i}}\sin (k\theta )} \right)(\cos \theta  + {\text{i}}\sin \theta )\)

\( = {r^{k + 1}}\left( {\cos (k\theta )\cos \theta  – \sin (k\theta )\sin \theta  + {\text{i}}\left( {\sin (k\theta )\cos \theta  + \cos (k\theta )\sin \theta } \right)} \right)\)     A1

\( = {r^{k + 1}}\left( {\cos (k\theta  + \theta ) + {\text{i}}\sin (k\theta  + \theta )} \right)\)     A1

\( = {r^{k + 1}}\left( {\cos (k + 1)\theta  + {\text{i}}\sin (k + 1)\theta } \right) \Rightarrow n = k + 1\) is true     A1

\({\text{P}}(k)\) true implies \({\text{P}}(k + 1)\) true and \({\text{P}}(1)\) is true, therefore by mathematical induction statement is true for \(n \geqslant 1\)     R1

Note:     Only award the final R1 if the first 4 marks have been awarded.

[7 marks]

a.

(i)     \(u = 2{\text{cis}}\left( {\frac{\pi }{3}} \right)\)     A1

\(v = \sqrt 2 {\text{cis}}\left( { – \frac{\pi }{4}} \right)\)     A1

Notes:     Accept 3 sf answers only. Accept equivalent forms.

     Accept \(2{e^{\frac{\pi }{3}i}}\) and \(\sqrt 2 {e^{ – \frac{\pi }{4}i}}\).

(ii)     \({u^3} = {2^3}{\text{cis}}(\pi ) =  – 8\)

\({v^4} = 4{\text{cis}}( – \pi ) =  – 4\)     (M1)

\({u^3}{v^4} = 32\)     A1

Notes:     Award (M1) for an attempt to find \({u^3}\) and \({v^4}\).

     Accept equivalent forms.

[4 marks]

b.

     A1

Note:     Award A1 if A or \({\text{1 + }}\sqrt 3 i\) and B or \(1 – i\) are in their correct quadrants, are aligned vertically and it is clear that \(\left| u \right| > \left| v \right|\).

[1 mark]

c.

Area \( = \frac{1}{2} \times 2 \times \sqrt 2  \times \sin \left( {\frac{{5\pi }}{{12}}} \right)\)     M1A1

\( = 1.37{\text{ }}\left( { = \frac{{\sqrt 2 }}{4}\left( {\sqrt 6  + \sqrt 2 } \right)} \right)\)     A1

Notes:     Award M1A0A0 for using \(\frac{{7\pi }}{{12}}\).

[3 marks]

d.

\((z – 1 + {\text{i}})(z – 1 – {\text{i}}) = {z^2} – 2z + 2\)     M1A1

Note:     Award M1 for recognition that a complex conjugate is also a root.

\(\left( {z – 1 – \sqrt 3 {\text{i}}} \right)\left( {z – 1 + \sqrt 3 {\text{i}}} \right) = {z^2} – 2z + 4\)     A1

\(\left( {{z^2} – 2z + 2} \right)\left( {{z^2} – 2z + 4} \right) = {z^4} – 4{z^3} + 10{z^2} – 12z + 8\)     M1A1

Note:     Award M1 for an attempt to expand two quadratics.

[5 marks]

e.

Examiners report

[N/A]

a.

[N/A]

b.

[N/A]

c.

[N/A]

d.

[N/A]

e.
Scroll to Top