IBDP Maths analysis and approaches Topic: AHL 2.16 :The graph of 1/f(x) given the graph of y=f(x) HL Paper 1

Question

Sketch on the same axes the curve \(y = \left| {\frac{7}{{x – 4}}} \right|\) and the line \(y = x + 2\), clearly indicating any axes intercepts and any asymptotes.[3]

a.

Find the exact solutions to the equation \(x + 2 = \left| {\frac{7}{{x – 4}}} \right|\).[5]

b.
Answer/Explanation

Markscheme

A1 for vertical asymptote and for the \(y\)-intercept \(\frac{7}{4}\)

A1 for general shape of \(y = \left| {\frac{7}{{x – 4}}} \right|\) including the \(x\)-axis as asymptote

A1 for straight line with \(y\)-intercept 2 and \(x\)-intercept of \( – 2\)     A1A1A1

[3 marks]

a.

METHOD 1

for \(x > 4\)

\((x + 2)(x – 4) = 7\)     (M1)

\({x^2} – 2x – 8 = 7 \Rightarrow {x^2} – 2x – 15 = 0\)

\((x – 5)(x + 3) = 0\)

\(({\text{as }}x > 4{\text{ then}}){\text{ }}x = 5\)     A1

Note:     Award A0 if \(x =  – 3\) is also given as a solution.

for \(x < 4\)

\((x + 2)(x – 4) =  – 7\)     M1

\( \Rightarrow {x^2} – 2x – 1 = 0\)

\(x = \frac{{2 \pm \sqrt {4 + 4} }}{2} = 1 \pm \sqrt 2 \)     (M1)A1

Note:     Second M1 is dependent on first M1.

[5 marks]

METHOD 2

\({(x + 2)^2} = \frac{{49}}{{{{(x – 4)}^2}}}\)     M1

\({x^4} – 4{x^3} – 12{x^2} + 32x + 15 = 0\)     A1

\((x + 3)(x – 5)({x^2} – 2x – 1) = 0\)

\(x = 5\)     A1

Note:     Award A0 if \(x =  – 3\) is also given as a solution.

\(x = \frac{{2 \pm \sqrt {4 + 4} }}{2} = 1 \pm \sqrt 2 \)     (M1)A1

[5 marks]

b.

Question

A rational function is defined by \(f(x) = a + \frac{b}{{x – c}}\) where the parameters \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\) and \(x \in \mathbb{R}\backslash \{ c\} \). The following diagram represents the graph of \(y = f(x)\).

Using the information on the graph,

state the value of \(a\) and the value of \(c\);[2]

a.

find the value of \(b\).[2]

b.
Answer/Explanation

Markscheme

\(a = 1\)    A1

\(c = 3\)    A1

[2 marks]

a.

use the coordinates of \((1,{\text{ }}0)\) on the graph     M1

\(f(1) = 0 \Rightarrow 1 + \frac{b}{{1 – 3}} = 0 \Rightarrow b = 2\)    A1

[2 marks]

b.

Question

Sketch the graphs of \(y = \frac{x}{2} + 1\) and \(y = \left| {x – 2} \right|\) on the following axes.

[3]

a.

Solve the equation \(\frac{x}{2} + 1 = \left| {x – 2} \right|\).[4]

b.
Answer/Explanation

Markscheme

straight line graph with correct axis intercepts      A1

modulus graph: V shape in upper half plane      A1

modulus graph having correct vertex and y-intercept      A1

[3 marks]

a.

METHOD 1

attempt to solve \(\frac{x}{2} + 1 = x – 2\)     (M1)

\(x = 6\)      A1

Note: Accept \(x = 6\) using the graph.

attempt to solve (algebraically) \(\frac{x}{2} + 1 = 2 – x\)     M1

\(x = \frac{2}{3}\)     A1

[4 marks]

METHOD 2

\({\left( {\frac{x}{2} + 1} \right)^2} = {\left( {x – 2} \right)^2}\)      M1

\(\frac{{{x^2}}}{4} + x + 1 = {x^2} – 4x + 4\)

\(0 = \frac{{3{x^2}}}{4} – 5x + 3\)

\(3{x^2} – 20x + 12 = 0\)

attempt to factorise (or equivalent)       M1

\(\left( {3x – 2} \right)\left( {x – 6} \right) = 0\)

\(x = \frac{2}{3}\)     A1

\(x = 6\)      A1

[4 marks]

b.
Scroll to Top