Home / IB DP Math AA Topic SL 3.2 :The cosine rule- IB Style Questions HL Paper 2

IB DP Math AA Topic SL 3.2 :The cosine rule- IB Style Questions HL Paper 2

Question: [Maximum mark: 6]

The following diagram shows a circle with centre O and radius 5 metres.
Points A and B lie on the circle and \(A\hat{O}B\) = 1.9  radians.

(a) Find the length of the chord [AB].
(b) Find the area of the shaded sector.

▶️Answer/Explanation

Ans:

(a) EITHER
uses the cosine rule 
AB2 = 52 + 52 -2 × 5 × 5 × cos1.9

OR
uses right-angled trigonometry

\(\frac{\frac{AB}{2}}{5}= sin 0.95\)

OR

uses the sine rule

\(\alpha \frac{1}{2}(\pi -1.9)(=0.6207…)\)

\(\frac{AB}{sin1.9}= \frac{5}{sin0.6207….}\)

THEN
AB = 8.1341…
AB = 8.13 (m)

(b) let the shaded area be A
METHOD 1
Attempt at finding reflex angle

\(A\hat{O}B = 2\pi -1.9 (=4.3831….)\)
substitution into area formula

\(A = \frac{1}{2}\times 5^{2}\times 4.3831…. OR \left ( \frac{2\pi -1.9}{2\pi } \right )\times \pi \left ( 5^{2} \right )\)
= 54.7898…
= 54.8 (m2)

METHOD 2
let the area of the circle be AC and the area of the unshaded sector be AU

Question

In triangle ABC, BC = a , AC = b , AB = c and [BD] is perpendicular to [AC].

 

(a)     Show that \({\text{CD}} = b – c\cos A\).

(b)     Hence, by using Pythagoras’ Theorem in the triangle BCD, prove the cosine rule for the triangle ABC.

(c)     If \({\rm{A\hat BC}} = 60^\circ \) , use the cosine rule to show that \(c = \frac{1}{2}a \pm \sqrt {{b^2} – \frac{3}{4}{a^2}} \) .[12]

Part A.

The above three dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively 25° and 40° , and PQ = 20 m .

Determine the height of the flagpole.[8]

Part B.
▶️Answer/Explanation

Markscheme

(a)     \({\text{CD}} = {\text{AC}} – {\text{AD}} = b – c\cos A\)     R1AG

[1 mark]

 

(b)     METHOD 1

\({\text{B}}{{\text{C}}^2} = {\text{B}}{{\text{D}}^2} + {\text{C}}{{\text{D}}^2}\)     (M1)

\({a^2} = {(c\sin A)^2} + {(b – c\cos A)^2}\)     (A1)

\( = {c^2}{\sin ^2}A + {b^2} – 2bc\cos A + {c^2}{\cos ^2}A\)     A1

\( = {b^2} + {c^2} – 2bc\cos A\)     A1

[4 marks]

METHOD 2

\({\text{B}}{{\text{D}}^2} = {\text{A}}{{\text{B}}^2} – {\text{A}}{{\text{D}}^2} = {\text{B}}{{\text{C}}^2} – {\text{C}}{{\text{D}}^2}\)     (M1)(A1)

\( \Rightarrow {c^2} – {c^2}{\cos ^2}A = {a^2} – {b^2} + 2bc\cos A – {c^2}{\cos ^2}A\)     A1

\( \Rightarrow {a^2} = {b^2} + {c^2} – 2bc\cos A\)     A1

[4 marks]

 

(c)     METHOD 1

\({b^2} = {a^2} + {c^2} – 2ac\cos 60^\circ  \Rightarrow {b^2} = {a^2} + {c^2} – ac\)     (M1)A1

\( \Rightarrow {c^2} – ac + {a^2} – {b^2} = 0\)     M1

\( \Rightarrow c = \frac{{a \pm \sqrt {{{( – a)}^2} – 4({a^2} – {b^2})} }}{2}\)     (M1)A1

\( = \frac{{a \pm \sqrt {4{b^2} – 3{a^2}} }}{2} = \frac{a}{2} \pm \sqrt {\frac{{4{b^2} – 3{a^2}}}{4}} \)     (M1)A1

\( = \frac{1}{2}a \pm \sqrt {{b^2} – \frac{3}{4}{a^2}} \)     AG

Note: Candidates can only obtain a maximum of the first three marks if they verify that the answer given in the question satisfies the equation.

 

[7 marks]

METHOD 2

\({b^2} = {a^2} + {c^2} – 2ac\cos 60^\circ  \Rightarrow {b^2} = {a^2} + {c^2} – ac\)     (M1)A1

\({c^2} – ac = {b^2} – {a^2}\)     (M1)

\({c^2} – ac + {\left( {\frac{a}{2}} \right)^2} = {b^2} – {a^2} + {\left( {\frac{a}{2}} \right)^2}\)     M1A1

\({\left( {c – \frac{a}{2}} \right)^2} = {b^2} – \frac{3}{4}{a^2}\)     (A1)

\(c – \frac{a}{2} =  \pm \sqrt {{b^2} – \frac{3}{4}{a^2}} \)     A1

\( \Rightarrow c = \frac{1}{2}a \pm \sqrt {{b^2} – \frac{3}{4}{a^2}} \)     AG

[7 marks]

Part A.

\({\text{PR}} = h\tan 55^\circ {\text{ , QR}} = h\tan 50^\circ {\text{ where RS}} = h\)     M1A1A1

Use the cosine rule in triangle PQR.     (M1)

\({20^2} = {h^2}{\tan ^2}55^\circ  + {h^2}{\tan ^2}50^\circ  – 2h\tan 55^\circ h\tan 50^\circ \cos 45^\circ \)     A1

\({h^2} = \frac{{400}}{{{{\tan }^2}55^\circ  + {{\tan }^2}50^\circ  – 2\tan 55^\circ \tan 50^\circ \cos 45^\circ }}\)     (A1)

\( = 379.9…\)     (A1)

\(h = 19.5{\text{ (m)}}\)     A1

[8 marks]

 

Question

In the right circular cone below, O is the centre of the base which has radius 6 cm. The points B and C are on the circumference of the base of the cone. The height AO of the cone is 8 cm and the angle \({\rm{B\hat OC}}\) is 60°. 

 

Calculate the size of the angle \({\rm{B\hat AC}}\).

▶️Answer/Explanation

Markscheme

AC = AB = 10 (cm)     A1

triangle OBC is equilateral     (M1)

BC = 6 (cm)     A1

EITHER

\({\rm{B\hat AC}} = 2\arcsin \frac{3}{{10}}\)     M1A1

\({\rm{B\hat AC}} = 34.9^\circ \,\,\,\,\,\)(accept 0.609 radians)     A1

OR

\(\cos {\rm{B\hat AC = }}\frac{{{{10}^2} + {{10}^2} – {6^2}}}{{2 \times 10 \times 10}} = \frac{{164}}{{200}}\)     M1A1

\({\rm{B\hat AC}} = 34.9^\circ \,\,\,\,\,\)(accept 0.609 radians)     A1

Note: Other valid methods may be seen.

[6 marks]

 

Question

Consider the triangle ABC where \({\rm{B\hat AC}} = 70^\circ \), AB = 8 cm and AC = 7 cm. The point D on the side BC is such that \(\frac{{{\text{BD}}}}{{{\text{DC}}}} = 2\).

Determine the length of AD.

▶️Answer/Explanation

Markscheme

use of cosine rule: \({\text{BC}} = \sqrt {({8^2} + {7^2} – 2 \times 7 \times 8\cos 70)} = 8.6426 \ldots \)     (M1)A1

Note: Accept an expression for \({\text{B}}{{\text{C}}^2}\).

\({\text{BD}} = 5.7617 \ldots \,\,\,\,\,{\text{(CD}} = 2.88085 \ldots )\)     A1

use of sine rule: \(\hat B = \arcsin \left( {\frac{{7\sin 70}}{{{\text{BC}}}}} \right) = 49.561 \ldots ^\circ \,\,\,\,\,(\hat C = 60.4387 \ldots ^\circ )\)     (M1)A1

use of cosine rule: \({\text{AD}} = \sqrt {{8^2} + {\text{B}}{{\text{D}}^2} – 2 \times {\text{BD}} \times 8\cos B}  = 6.12{\text{ (cm)}}\)     A1

Note: Scale drawing method not acceptable.

[6 marks]

 

Question

Given \(\Delta \)ABC, with lengths shown in the diagram below, find the length of the line segment [CD].

▶️Answer/Explanation

Markscheme

METHOD 1

\(\frac{{\sin C}}{7} = \frac{{\sin 40}}{5}\)     M1(A1)

\({\text{B}}\hat {\text{C}}{\text{D}} = 64.14…^\circ \)     A1

\({\text{CD}} = 2 \times 5\cos 64.14…\)     M1

Note: Also allow use of sine or cosine rule.

\({\text{CD}} = 4.36\)     A1

[5 marks]

 METHOD 2

let \({\text{AC}} = x\)

cosine rule

\({5^2} = {7^2} + {x^2} – 2 \times 7 \times x\cos 40\)     M1A1

\({x^2} – 10.7 … x + 24 = 0\)

\(x = \frac{{10.7… \pm \sqrt {{{\left( {10.7…} \right)}^2} – 4 \times 24} }}{2}\)     (M1)

\(x = 7.54\); \(3.18\)     (A1)

CD is the difference in these two values \(= 4.36\)     A1

Note: Other methods may be seen.

[5 marks

Question

An electricity station is on the edge of a straight coastline. A lighthouse is located in the sea 200 m from the electricity station. The angle between the coastline and the line joining the lighthouse with the electricity station is 60°. A cable needs to be laid connecting the lighthouse to the electricity station. It is decided to lay the cable in a straight line to the coast and then along the coast to the electricity station. The length of cable laid along the coastline is x metres. This information is illustrated in the diagram below.

 

 

The cost of laying the cable along the sea bed is US$80 per metre, and the cost of laying it on land is US$20 per metre.

a.Find, in terms of x, an expression for the cost of laying the cable.[4]

 

b.Find the value of x, to the nearest metre, such that this cost is minimized.[2]

 
▶️Answer/Explanation

Markscheme

let the distance the cable is laid along the seabed be y

\({y^2} = {x^2} + {200^2} – 2 \times x \times 200\cos 60^\circ \)     (M1)

(or equivalent method)

\({y^2} = {x^2} – 200x + 40000\)     (A1)

cost = C = 80y + 20x     (M1)

\(C = 80{({x^2} – 200x + 40000)^{\frac{1}{2}}} + 20x\)     A1

[4 marks]

a.

\(x = 55.2786 \ldots  = 55\) (m to the nearest metre)     (A1)A1

\(\left( {x = 100 – \sqrt {2000} } \right)\)

[2 marks]

Scroll to Top