IB DP Math AA Topic: AHL 5.12 Definition of derivative from first principles HL Paper 2

Question

Consider the curve with equation \({x^3} + {y^3} = 4xy\).

The tangent to this curve is parallel to the \(x\)-axis at the point where \(x = k,{\text{ }}k > 0\).

a.Use implicit differentiation to show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y – 3{x^2}}}{{3{y^2} – 4x}}\).[3]

b.Find the value of \(k\).[5]

▶️Answer/Explanation

Markscheme

\(3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4\left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\)    M1A1

\((3{y^2} – 4x)\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4y – 3{x^2}\)    A1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y – 3{x^2}}}{{3{y^2} – 4x}}\)    AG

[3 marks]

a.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow 4y – 3{x^2} = 0\)    (M1)

substituting \(x = k\) and \(y = \frac{3}{4}{k^2}\) into \({x^3} + {y^3} = 4xy\)     M1

\({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\)    A1

attempting to solve \({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\) for \(k\)     (M1)

\(k = 1.68{\text{ }}\left( { = \frac{4}{3}\sqrt[3]{2}} \right)\)    A1

Note:     Condone substituting \(y = \frac{3}{4}{x^2}\) into \({x^3} + {y^3} = 4xy\) and solving for \(x\).

 

 
 

Question

Consider the curve defined by the equation \(4{x^2} + {y^2} = 7\).

a.Find the equation of the normal to the curve at the point \(\left( {1,{\text{ }}\sqrt 3 } \right)\).[6]

b.Find the volume of the solid formed when the region bounded by the curve, the \(x\)-axis for \(x \geqslant 0\) and the \(y\)-axis for \(y \geqslant 0\) is rotated through \(2\pi \) about the \(x\)-axis.[3]

 
▶️Answer/Explanation

Markscheme

METHOD 1

\(4{x^2} + {y^2} = 7\)

\(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     (M1)(A1)

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – \frac{{4x}}{y}\)

Note:     Award M1A1 for finding \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – 2.309 \ldots \) using any alternative method.

hence gradient of normal \( = \frac{y}{{4x}}\)     (M1)

hence gradient of normal at \(\left( {1,{\text{ }}\sqrt 3 } \right)\) is \(\frac{{\sqrt 3 }}{4}\,\,\,( = 0.433)\)     (A1)

hence equation of normal is \(y – \sqrt 3 = \frac{{\sqrt 3 }}{4}(x – 1)\)     (M1)A1

\(\left( {y = \frac{{\sqrt 3 }}{4}x + \frac{{3\sqrt 3 }}{4}} \right)\,\,\,(y = 0.433x + 1.30)\)

METHOD 2

\(4{x^2} + {y^2} = 7\)

\(y = \sqrt {7 – 4{x^2}} \)     (M1)

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – \frac{{4x}}{{\sqrt {7 – 4{x^2}} }}\)     (A1)

Note:     Award M1A1 for finding \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = – 2.309 \ldots \) using any alternative method.

hence gradient of normal \( = \frac{{\sqrt {7 – 4{x^2}} }}{{4x}}\)     (M1)

hence gradient of normal at \(\left( {1,{\text{ }}\sqrt 3 } \right)\) is \(\frac{{\sqrt 3 }}{4}\,\,\,( = 0.433)\)     (A1)

hence equation of normal is \(y – \sqrt 3 = \frac{{\sqrt 3 }}{4}(x – 1)\)     (M1)A1

\(\left( {y = \frac{{\sqrt 3 }}{4}x + \frac{{3\sqrt 3 }}{4}} \right)\,\,\,(y = 0.433x + 1.30)\)

[6 marks]

a.

Use of \(V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {{y^2}{\text{d}}x} \)

\(V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {\left( {7 – 4{x^2}} \right){\text{d}}x} \)    (M1)(A1)

Note:     Condone absence of limits or incorrect limits for M mark.

Do not condone absence of or multiples of \(\pi \).

\( = 19.4\,\,\,\left( { = \frac{{7\sqrt 7 \pi }}{3}} \right)\)     A1

[3 marks]

Question

Consider the function \(f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi \).

Consider the region bounded by the curve \(y = f(x)\), the \(x\)-axis and the lines \(x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}\).

a.i.Show that the \(x\)-coordinate of the minimum point on the curve \(y = f(x)\) satisfies the equation \(\tan x = 2x\).[5]

a.ii.Determine the values of \(x\) for which \(f(x)\) is a decreasing function.[2]

b.Sketch the graph of \(y = f(x)\) showing clearly the minimum point and any asymptotic behaviour.[3]

c.Find the coordinates of the point on the graph of \(f\) where the normal to the graph is parallel to the line \(y =  – x\).[4]

d.This region is now rotated through \(2\pi \) radians about the \(x\)-axis. Find the volume of revolution.[3]

▶️Answer/Explanation

Markscheme

attempt to use quotient rule or product rule     M1

\(f’(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ – \frac{1}{2}}}} \right) – \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} – \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)\)     A1A1

Note:     Award A1 for \(\frac{1}{{2\sqrt x \sin x}}\) or equivalent and A1 for \( – \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}\) or equivalent.

setting \(f’(x) = 0\)     M1

\(\frac{{\sin x}}{{2\sqrt x }} – \sqrt x \cos x = 0\)

\(\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x\) or equivalent     A1

\(\tan x = 2x\)     AG

[5 marks]

a.i.

\(x = 1.17\)

\(0 < x \leqslant 1.17\)     A1A1

Note:     Award A1 for \(0 < x\) and A1 for \(x \leqslant 1.17\). Accept \(x < 1.17\).

[2 marks]

a.ii.

concave up curve over correct domain with one minimum point above the \(x\)-axis.     A1

approaches \(x = 0\) asymptotically     A1

approaches \(x = \pi \) asymptotically     A1

Note:     For the final A1 an asymptote must be seen, and \(\pi \) must be seen on the \(x\)-axis or in an equation.

[3 marks]

b.

\(f’(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ – \frac{1}{2}}}} \right) – \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1\)     (A1)

attempt to solve for \(x\)     (M1)

\(x = 1.96\)     A1

\(y = f(1.96 \ldots )\)

\( = 1.51\)     A1

[4 marks]

c.

\(V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} \)     (M1)(A1)

Note:     M1 is for an integral of the correct squared function (with or without limits and/or \(\pi \)).

\( = 2.68{\text{ }}( = 0.852\pi )\)     A1

[3 marks]

 

 
 
 
 
 

Question

A curve C is given by the implicit equation \(x + y – {\text{cos}}\left( {xy} \right) = 0\).

The curve \(xy =  – \frac{\pi }{2}\) intersects C at P and Q.

a.Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\).[5]

b.i.Find the coordinates of P and Q.[4]

b.ii.Given that the gradients of the tangents to C at P and Q are m1 and m2 respectively, show that m1 × m2 = 1.[3]

c.Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line \(y =  – x\).[7]

▶️Answer/Explanation

Markscheme

attempt at implicit differentiation      M1

\(1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0\)     A1M1A1

Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.

\(\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 1 – y\,{\text{sin}}\left( {xy} \right)\)     A1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\)     AG

[5 marks]

a.

EITHER

when \(xy =  – \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0\)     M1

\( \Rightarrow x + y = 0\)    (A1)

OR

\(x – \frac{\pi }{{2x}} – {\text{cos}}\left( {\frac{{ – \pi }}{2}} \right) = 0\) or equivalent      M1

\(x – \frac{\pi }{{2x}} = 0\)     (A1)

THEN

therefore \({x^2} = \frac{\pi }{2}\left( {x =  \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x =  \pm 1.25} \right)\)     A1

\({\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, – \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { – \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)\) or \(P\left( {1.25,\, – 1.25} \right),\,Q\left( { – 1.25,\,1.25} \right)\)     A1

[4 marks]

b.i.

m1 = \( – \left( {\frac{{1 – \sqrt {\frac{\pi }{2}}  \times  – 1}}{{1 + \sqrt {\frac{\pi }{2}}  \times  – 1}}} \right)\)     M1A1

m= \( – \left( {\frac{{1 + \sqrt {\frac{\pi }{2}}  \times  – 1}}{{1 – \sqrt {\frac{\pi }{2}}  \times  – 1}}} \right)\)     A1

mm= 1     AG

Note: Award M1A0A0 if decimal approximations are used.
Note: No FT applies.

[3 marks]

b.ii.irst case, attempt to solve \(2x = {\text{cos}}\left( {{x^2}} \right)\)     M1

(0.486,0.48

equate derivative to −1    M1

\(\left( {y – x} \right){\text{sin}}\left( {xy} \right) = 0\)     (A1)

\(y = x,\,{\text{sin}}\left( {xy} \right) = 0\)     R1

in the f6)      A1

in the second case, \({\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0\) and \(x + y = 1\)     (M1)

(0,1), (1,0)      A1

[7 marks]

 

 

 
Scroll to Top