Home / IBDP Maths analysis and approaches Topic: AHL 5.12 Informal ideas of limit, continuity and convergence HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 5.12 Informal ideas of limit, continuity and convergence HL Paper 1

Question

(a) Let $f(x)=(1-ax)^{-\frac{1}{2}}$, where $ax<1, a\neq 0$.
The $n^{th}$ derivative of $f(x)$ is denoted by $f^{(n)}(x), n \in \mathbb{Z}^{+}$.

Prove by induction that
\[f^{(n)}(x)=\frac{a^n(2n-1)!(1-ax)^{\frac{2n+1}{2}}}{2^{2n}n!(n-1)!}, n \in \mathbb{Z}^{+}.\]

(b) By using part (a) or otherwise, show that the Maclaurin series for $f(x)=(1-ax)^{-\frac{1}{2}}$
up to and including the $x^2$ term is $1+\frac{1}{2}ax+\frac{3}{8}a^2x^2$.

(c) Hence, show that
\[(1-2x)^{-\frac{1}{2}}(1-4x)^{-\frac{1}{2}}\approx\frac{2+6x+19x^2}{2}.\]

(d) Given that the series expansion for $(1-ax)^{-\frac{1}{2}};$ convergent for $|ax|<1$,
state the restriction which must be placed on $x$ for the approximation
\[(1-2x)^{-\frac{1}{2}}(1-4x)^{-\frac{1}{2}}\approx\frac{2+6x+19x^2}{2}\]
to be valid.

(e) Use $x=\frac{1}{10}$ to determine an approximate value for $\sqrt{3}$.
Give your answer in the form $\frac{c}{d}$, where $c, d \in \mathbb{Z}^{+}$.

▶Answer/Explanation

Solution:-

(a)  n=1:

$LHS=f^{(1)}(x)=-\frac{1}{2}x-a(1-ax)^{\frac{3}{2}}(-\frac{a}{2}(1-ax)^{\frac{3}{2}})$
$RHS=\frac{a(1)(1-ax)^{\frac{1}{2}}}{2^{1}(0)!}$ therefore true for $n=1$

assume that the result is true for $n=k$

$f^{(k)}(x)=\frac{a^{k}(2k-1)!(1-ax)^{\frac{2k+1}{2}}}{2^{2k-1}(k-1)!}$
attempt to differentiate the right-hand side with respect to x:

$f^{(k+1)}(x)=\frac{d}{dx}(f^{(k)}(x))$
$=-\frac{(2k+1)\times-a}{2}\times\frac{a^{k}(2k-1)!(1-ax)^{\frac{2k+1}{2}-1}}{2^{2k-1}(k-1)!}$ (or equivalent)

attempt to multiply top and bottom by 2k

$=\frac{(2k+1)}{2}\times\frac{a^{k+1}(2k-1)!(1-ax)^{\frac{2k+1}{2}-1}}{2^{2k-1}(k-1)!}\times\frac{2k}{2k}$
$=\frac{a^{k+1}(2k+1)!(1-ax)^{\frac{2k+1}{2}}}{2^{2k}(k)!}$

hence if the result is true for $n=k$ then it is true for $n=k+1$ and as it is true for $n=1$
is true for all $n \in \mathbb{Z}^+$

(b)

$f(x)=f(0)+xf'(0)+\frac{x^{2}}{2}f”(0)+….$

$f'(x)=\frac{a^{2}(3)(1-ax)^{-\frac{5}{2}}}{2^{2}(1!)}$ OR $\frac{3}{4}a^{2}(1-ax)^{-\frac{5}{2}}$ OR $f'(0)=\frac{a^{2}(3)}{2^{2}}$

$f(0)=1, f'(0)=\frac{a}{2}, f”(0)=\frac{6a^{2}}{8}$

$f(x)=1+\frac{1}{2}ax+\frac{3}{8}a^{2}x^{2}+….$

(c) attempt to use a=2 or a=4 in the expansion

$(1-2x)^{\frac{1}{2}}=1+\frac{2x}{2}+\frac{3\times4x^2}{8}(=1+x+\frac{3}{2}x^2+…)$
$(1-4x)^{\frac{1}{3}}=1+\frac{4x}{2}+\frac{3\times16x^2}{8}(=1+2x+6x^2+…)$

attempt to multiply their two expansions together

$(1+x+\frac{3}{2}x^2+…)(1+2x+6x^2+…)=1+2x+6x^2+x+2x^2+\frac{3}{2}x^2+…$
$=1+3x+\frac{19}{2}x^2+…$ OR $\frac{2+4x+12x^2+2x+4x^2+3x^2+…}{2}$

$(1-2x)^{\frac{1}{2}}(1-4x)^{\frac{1}{3}}\approx\frac{2+6x+19x^2}{2}$

(d) $|x|<\frac{1}{4}$

(e)
$(\frac{2+6x+19x^{2}}{2})=\frac{2+0.6+0.19}{2}(=\frac{279}{200})$ (or equivalent)

attempt to substitute $x=\frac{1}{10}$ into $(1-2x)^{-\frac{1}{2}}(1-4x)^{-\frac{1}{2}}$

$((1-2x)^{-\frac{1}{2}}(1-4x)^{-\frac{1}{2}}=\frac{10}{\sqrt{48}}$ (or equivalent)

$\frac{10}{4\sqrt{3}}=\frac{279}{200}$ (or equivalent in terms of $\sqrt{3}$)

$\frac{1}{\sqrt{3}}=\frac{279}{500}$

$\sqrt{3}=\frac{500}{279}$

Question: [Maximum mark: 8]

The continuous random variable X has probability density function

                               

(a) Find the value of k .
(b) Find E(X) .

▶️Answer/Explanation

Ans:

(a) attempt to integrate \(\frac{k}{\sqrt{4-3x^{2}}}\)

\(= k \left \lfloor \frac{1}{\sqrt{3}}arcsin\left ( \frac{\sqrt{3}}{2}x \right ) \right \rfloor\)

Note: Award (M1)A0 for arcsin \(\left ( \frac{\sqrt{3}}{2}x \right )\)

Condone absence of k up to this stage.

equating their integrand to 1

(b) \(E(X) = \frac{3\sqrt{3}}{\pi }\int_{0}^{1}\frac{x}{\sqrt{4-3x^{2}}}dx\)

Note: Condone absence of limits if seen at a later stage.

EITHER
attempt to integrate by inspection

\( = \frac{3\sqrt{3}}{\pi }\times -\frac{1}{6}\int -6x\left ( 4-3x^{2} \right )^{-\frac{1}{2}}dx\)

Note: Condone the use of k up to this stage.

OR
for example, \(u = 4-3c^{2} \Rightarrow \frac{du}{dx}= -6x\)

Note: Other substitutions may be used. For example, u = −3x2.

\(= – \frac{\sqrt{3}}{2\pi } \int_{4}^{1}u^{-\frac{1}{2}} du\)

Note: Condone absence of limits up to this stage.

Question

The function f is defined by

\[f(x) = \left\{ \begin{array}{r}1 – 2x,\\{\textstyle{3 \over 4}}{(x – 2)^2} – 3,\end{array} \right.\begin{array}{*{20}{c}}{x \le 2}\\{x > 2}\end{array}\]

a.Determine whether or not \(f\)is continuous.[2]

 

b.The graph of the function \(g\) is obtained by applying the following transformations to the graph of \(f\):

a reflection in the \(y\)–axis followed by a translation by the vector \(\left( \begin{array}{l}2\\0\end{array} \right)\).

Find \(g(x)\).[4]

 
▶️Answer/Explanation

Markscheme

\(1 – 2(2) = –  3\) and \(\frac{3}{4}{(2 – 2)^2} – 3 =  – 3\)     A1

both answers are the same, hence f is continuous (at \(x = 2\))     R1

Note:     R1 may be awarded for justification using a graph or referring to limits. Do not award A0R1.

[2 marks]

a.

reflection in the y-axis

\(f( – x) = \left\{ \begin{array}{r}1 + 2x,\\{\textstyle{3 \over 4}}{(x + 2)^2} – 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge  – 2}\\{x <  – 2}\end{array}\)     (M1)

Note:     Award M1 for evidence of reflecting a graph in y-axis.

translation \(\left( \begin{array}{l}2\\0\end{array} \right)\)

\(g(x) = \left\{ \begin{array}{r}2x – 3,\\{\textstyle{3 \over 4}}{x^2} – 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge 0}\\{x < 0}\end{array}\)     (M1)A1A1

Note:     Award (M1) for attempting to substitute \((x – 2)\) for x, or translating a graph along positive x-axis.

     Award A1 for the correct domains (this mark can be awarded independent of the M1).

     Award A1 for the correct expressions.

 

[4 marks]

b.

Examiners report

[N/A]

a.

[N/A]

b.

Question

Find the \(x\)-coordinates of all the points on the curve \(y = 2{x^4} + 6{x^3} + \frac{7}{2}{x^2} – 5x + \frac{3}{2}\) at which

the tangent to the curve is parallel to the tangent at \(( – 1,{\text{ }}6)\).

▶️Answer/Explanation

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 8{x^3} + 18{x^2} + 7x – 5\)    A1

when \(x =  – 1,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 2\)     A1

\(8{x^3} + 18{x^2} + 7x – 5 =  – 2\)    M1

\(8{x^3} + 18{x^2} + 7x – 3 = 0\)

\((x + 1)\) is a factor     A1

\(8{x^3} + 18{x^2} + 7x – 3 = (x + 1)(8{x^2} + 10x – 3)\)    (M1)

Note:     M1 is for attempting to find the quadratic factor.

\((x + 1)(4x – 1)(2x + 3) = 0\)

\((x =  – 1),{\text{ }}x = 0.25,{\text{ }}x =  – 1.5\)    (M1)A1

Note:     M1 is for an attempt to solve their quadratic factor.

[7 marks]

Examiners report

The first half of the question was accessible to all the candidates. Some though saw the word ‘tangent’ and lost time calculating the equation of this. It was a pity that so many failed to spot that \(x + 1\) was a factor of the cubic and so did not make much progress with the final part of this question.

Scroll to Top