IB DP Maths Topic 9.3 Continuous functions and differentiable functions HL Paper 3

Marks available8
Reference code14M.3ca.hl.TZ0.4

Question

The function f is defined by \(f(x) = \left\{ \begin{array}{r}{e^{ – x^3}}( – {x^3} + 2{x^2} + x),x \le 1\\ax + b,x > 1\end{array} \right.\), where \(a\) and \(b\) are constants.

Find the exact values of \(a\) and \(b\) if \(f\) is continuous and differentiable at \(x = 1\).

[8]
a.

(i)     Use Rolle’s theorem, applied to \(f\), to prove that \(2{x^4} – 4{x^3} – 5{x^2} + 4x + 1 = 0\) has a root in the interval \(\left] { – 1,1} \right[\).

(ii)     Hence prove that \(2{x^4} – 4{x^3} – 5{x^2} + 4x + 1 = 0\) has at least two roots in the interval \(\left] { – 1,1} \right[\).

[7]
b.

Markscheme

\(\mathop {{\text{lim}}}\limits_{x \to {1^ – }} {{\text{e}}^{ – {x^2}}}\left( { – {x^3} + 2{x^2} + x} \right) = \mathop {{\text{lim}}}\limits_{x \to {1^ + }}  (ax + b)\)   \(( = a + b)\)     M1

\(2{{\text{e}}^{ – 1}} = a + b\)     A1

differentiability: attempt to differentiate both expressions     M1

\(f'(x) =  – 2x{{\text{e}}^{ – {x^2}}}\left( { – {x^3} + 2{x^2} + x} \right) + {{\text{e}}^{ – {x^2}}}\left( { – 3{x^2} + 4x + 1} \right)\)   \((x < 1)\)     A1

(or \(f'(x) = {{\text{e}}^{ – {x^2}}}\left( {2{x^4} – 4{x^3} – 5{x^2} + 4x + 1} \right)\))

\(f'(x) = a\)   \((x > 1)\)     A1

substitute \(x = 1\) in both expressions and equate

\( – 2{{\text{e}}^{ – 1}} = a\)     A1

substitute value of \(a\) and find \(b = 4{{\text{e}}^{ – 1}}\)     M1A1

[8 marks]

a.

(i)     \(f'(x) = {{\text{e}}^{ – {x^2}}}\left( {2{x^4} – 4{x^3} – 5{x^2} + 4x + 1} \right)\)   (for \(x \leqslant 1\))     M1

\(f(1) = f( – 1)\)     M1

Rolle’s theorem statement     (A1)

by Rolle’s Theorem, \(f'(x)\) has a zero in \(\left] { – 1,1} \right[\)     R1

hence quartic equation has a root in \(\left] { – 1,1} \right[\)     AG

(ii)     let \(g(x) = 2{x^4} – 4{x^3} – 5{x^2} + 4x + 1\).

\(g( – 1) = g(1) < 0\) and \(g(0) > 0\)     M1

as \(g\) is a polynomial function it is continuous in \(\left[ { – 1,0} \right]\) and \(\left[ {0,{\text{ 1}}} \right]\).     R1

(or \(g\) is a polynomial function continuous in any interval of real numbers)

then the graph of \(g\) must cross the x-axis at least once in \(\left] { – 1,0} \right[\)     R1

and at least once in \(\left] {0,1} \right[\).

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.
Marks available6
Reference code18M.3ca.hl.TZ0.2

Question

The function \(f\) is defined by

\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\left| {x – 2} \right| + 1}&{x < 2} \\
{a{x^2} + bx}&{x \geqslant 2}
\end{array}} \right.\]

where \(a\) and \(b\) are real constants

Given that both \(f\) and its derivative are continuous at \(x = 2\), find the value of \(a\) and the value of \(b\).

Markscheme

considering continuity at \(x = 2\)

\(\mathop {{\text{lim}}}\limits_{x \to {2^ – }} f\left( x \right) = 1\) and \(\mathop {{\text{lim}}}\limits_{x \to {2^ + }} f\left( x \right) = 4a + 2b\)    (M1)

\(4a + 2b = 1\)     A1

considering differentiability at \(x = 2\)

\(f’\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{ – 1}&{x < 2} \\
{2ax + b}&{x \geqslant 2}
\end{array}} \right.\)    (M1)

\(\mathop {{\text{lim}}}\limits_{x \to {2^ – }} f’\left( x \right) =  – 1\) and \(\mathop {{\text{lim}}}\limits_{x \to {2^ + }} f’\left( x \right) = 4a + b\)     (M1)

Note: The above M1 is for attempting to find the left and right limit of their derived piecewise function at \(x = 2\).

\(4a + b =  – 1\)     A1

\(a =  – \frac{3}{4}\) and \(b = 2\)     A1

[6 marks]

Examiners report

[N/A]
Scroll to Top