Home / 2023-May-Mathematics_analysis_and_approaches_paper_1__TZ2_HL- Detailed Solution

Question 1

Topic: SL 3.4

Given :

  1. A  circle with centre O and radius 4cm.

The points P, Q and R lie on the circumference of the circle and PÔR = θ, where θ is measured in radians with length of arc PQR is 10cm

Find
(a) perimeter of the shaded sector.
(b) Angle θ and 
(c) area of the shaded sector.

▶️Answer/Explanation

Answer:

(a) attempts to find perimeter
arc+2 × radius OR 10 + 4 + 4
= 18 (cm)

Perimeter of the shaded sector: The perimeter of the shaded sector is the sum of the lengths of the arc PQR and the radii OP and OR.

(b) 10 = 4θ
θ = \(\frac{10}{4}\) \(=\frac{5}{2}\), 2.5)

\(10=4\times \theta \)

\(\theta =\frac{10}{4}\Rightarrow 2.5\)

(c) area = \(\frac{1}{2}(\frac{10}{4})(4^2)\) (=1.25 × 16)
= 20 (\(cm^2\))

The area of the shaded sector is calculated using the formula:

Area of sector \(=\frac{1}{2}r^{2}\theta \Rightarrow \frac{1}{2}4^{2}\left ( 2.5 \right )\)

Area of sector\(=\frac{1}{2}\times 16\times 2.5\Rightarrow 20 cm^{2}\)

Question 2

Topic: SL 2.8

Given:

  1.  f(x) = 1 – \(\frac{1}{x-2}\), where \(x\epsilon \mathbb{R}\), x ≠ 2.

(a)  If  graph of y = f (x) has a vertical asymptote and a horizontal asymptote.
Then Find: 
(i) the vertical asymptote;
(ii) the horizontal asymptote.
(b) What will be coordinates if  graph of y = f (x) intersects at 
(i) the y-axis;
(ii) the x-axis.
(c)  sketch the graph of y = f (x), showing all the features found in parts (a) and (b).

▶️Answer/Explanation

Answer:

(a) (i) x = 2
(ii) y = 1

(i) The vertical asymptote occurs when the denominator of the fraction becomes zero. Since the denominator is x-2, the vertical asymptote is at x=2.

(ii) To find the horizontal asymptote, we look at the behavior of the function as x 

approaches positive or negative infinity. For this function, as 

x approaches positive or negative infinity, the term \(\frac{1}{x-2}\) becomes very close to zero. Thus, the horizontal asymptote is the horizontal line y = 1, as x approaches positive or negative infinity.

(b) (i) (0, \(\frac{3}{2}\))

To find the point where the graph intersects the y-axis, set x=0 in the function:

\(f(0) = 1 – \frac{1}{0-2}\Rightarrow 1+\frac{1}{2}\Rightarrow \frac{3}{2}\)

So, the coordinates of the point where the graph intersects the y-axis are \(\left (0,\frac{3}{2} \right )\)

(ii) (3, 0)

To find the point where the graph intersects the x-axis, set y=0 in the function:

\(0 = 1 – \frac{1}{x-2}\Rightarrow \frac{1}{x-2}=1\)

\(x-2=1\Rightarrow x=3\)

So, the coordinates of the point where the graph intersects the x-axis are (3, 0).

(c)

two correct branches with correct asymptotic behaviour and intercepts clearly shown

To sketch the graph of y=f(x), we incorporate the features found in parts (a) and (b). We have:

  • A vertical asymptote at x=2
  • A horizontal asymptote at y = 1
  • Intersecting the y-axis at \(\left (0,\frac{3}{2} \right )\).
  • Intersecting the x-axis at (3, 0).
Scroll to Top