- IBDP Maths AA SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AA SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AA HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AA HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2

### Paper 1

** New IBDP Mathematics: Analysis and Approaches SL- Syllabus**

**New IBDP Mathematics: Analysis and Approaches SL- Syllabus**

__SL__

- Time: 45 minutes (30 marks)
- 30 multiple – choice questions (core)
- No marks deducted from incorrect answers
- NO CALCULATOR ALLOWED
- Data booklet provided
- 20% weight

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

### IB Diploma Maths analysis and approaches IB Style questions SL Paper 1

**Topic 1: Number and algebra****– **SL content

- Topic : SL 1.1
- Topic : SL 1.2
- Topic : SL 1.3
- Topic : SL 1.4
- Topic : SL 1.5
- Topic : SL 1.6
- Topic : SL 1.7
- Topic : SL 1.8
- Topic : SL 1.9

### Topic 2: Functions**– **SL content

- Topic: SL 2.1
- Topic: SL 2.2
- Concept of a function, domain, range and graph. Function notation, for example f(x), v(t), C(n). The concept of a function as a mathematical model.
- Informal concept that an inverse function reverses or undoes the effect of a function. Inverse function as a reflection in the line y = x, and the notation f
^{−1}(x).

- Topic: SL 2.3
- Topic: SL 2.4
- Topic: SL 2.5
- Composite functions.
- (f ∘ g)(x) = f(g(x))

- Identity function.
- Finding the inverse function f
^{−1}(x)- (f ∘ f
^{−1})(x) = (f^{−1}∘ f)(x) = x

- (f ∘ f

- Composite functions.
- Topic: SL 2.6
- Topic: SL 2.7
- Topic: SL 2.8
- Topic: SL 2.9
- Topic: SL 2.10
- Topic SL 2.11

### Topic 3: Geometry and trigonometry-SL content

- Topic : SL 3.1
- The distance between two points in three dimensional space, and their midpoint.
- Volume and surface area of three-dimensional solids including right-pyramid, right cone, sphere, hemisphere and combinations of these solids.
- The size of an angle between two intersecting lines or between a line and a plane.

- Topic SL 3.2
- Topic SL 3.3
- Topic SL 3.4
- Topic SL 3.5
- Definition of \(\cos \theta \) , \(\sin \theta \) in terms of the unit circle and \(\tan \theta \) as \(\frac{sin\theta }{cos\theta }\).
- Exact values of \(\sin\), \(\cos\) and \(\tan\) of \(0\), \(\frac{\pi }{6}\), \(\frac{\pi }{4}\), \(\frac{\pi }{3}\), \(\frac{\pi }{2}\) and their multiples.
- Extension of the sine rule to the ambiguous case

- Topic SL 3.6
- Topic : SL 3.7
- Topic : SL 3.8

**Topic 4 : Statistics and probability-SL content**

- Topic: SL 4.1
- Topic: SL 4.2
- Topic: SL 4.3
- Topic: SL 4.4
- Linear correlation of bivariate data. Pearson’s product-moment correlation coefficient, r.
- Scatter diagrams; lines of best fit, by eye, passing through the mean point.
- Equation of the regression line of y on x.
- Use of the equation of the regression line for prediction purposes.
- Interpret the meaning of the parameters, a and b, in a linear regression y = ax + b.

- Topic: SL 4.5
- Topic: SL 4.6
- Use of Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes to calculate probabilities.
- Combined events: P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
- Mutually exclusive events: P(A ∩ B) = 0.
- Conditional probability; the definition \(P\left( {\left. A \right|P} \right) = \frac{{P\left( {A\mathop \cap \nolimits B} \right)}}{{P\left( B \right)}}\).
- Independent events; the definition \(P\left( {\left. A \right|B} \right) = P\left( A \right) = P\left( {\left. A \right|B’} \right)\) .

- Topic: SL 4.7
- Topic: SL 4.8
- Topic: SL 4.9
- Topic: SL 4.10
- Topic: SL 4.11
- Topic: SL 4.12

### Topic 5: Calculus-SL content

- Topic SL 5.1
- Topic SL 5.2
- Topic SL 5.3
- Topic SL 5.4
- Topic: SL 5.5
- Introduction to integration as anti-differentiation of functions of the form f(x) = ax
^{n}+ bx^{n−1}+ …., where n ∈ ℤ, n ≠ − 1. - Anti-differentiation with a boundary condition to determine the constant term.
- Definite integrals using technology.
- Area of a region enclosed by a curve y = f(x) and the x -axis, where f(x) > 0.

- Introduction to integration as anti-differentiation of functions of the form f(x) = ax
- Topic: SL 5.6
- Topic: SL 5.7
- Topic: SL 5.8
- Topic SL 5.9
- Topic SL 5.10
- Topic SL 5.11