Home / IB Math Analysis & Approaches Questionbank-Topic: SL 3.4-The circle SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 3.4-The circle SL Paper 1

Question

The diagram shows two concentric circles with centre O.


The radius of the smaller circle is 8 cm and the radius of the larger circle is 10 cm.

Points A, B and C are on the circumference of the larger circle such that \({\rm{A}}\widehat {\rm{O}}{\rm{B}}\) is \(\frac{\pi }{3}\) radians.

Find the length of the arc ACB .[2]

a.

Find the area of the shaded region.[4]

b.
Answer/Explanation

Markscheme

correct substitution in \(l = r\theta \)     (A1)

e.g. \(10 \times \frac{\pi }{3}\) , \(\frac{1}{6} \times 2\pi  \times 10\)

arc length \( = \frac{{20\pi }}{6}\) \(\left( { = \frac{{10\pi }}{3}} \right)\)     A1      N2

[2 marks]

a.

area of large sector \( = \frac{1}{2} \times {10^2} \times \frac{\pi }{3}\) \(\left( { = \frac{{100\pi }}{6}} \right)\)     (A1)

area of small sector \( = \frac{1}{2} \times {8^2} \times \frac{\pi }{3}\) \(\left( { = \frac{{64\pi }}{6}} \right)\)     (A1)

evidence of valid approach (seen anywhere)     M1

e.g. subtracting areas of two sectors, \(\frac{1}{2} \times \frac{\pi }{3}({10^2} – {8^2})\)

area shaded \( = 6\pi \) (accept \(\frac{{36\pi }}{6}\) , etc.)     A1     N3

[4 marks]

b.

Question

The following diagram shows a circle with centre \(O\) and a radius of \(10\) cm. Points \(A\), \(B\) and \(C\) lie on the circle.

Angle \(AOB\) is \(1.2\) radians.

Find the length of \({\text{arc ACB}}\).[2]

a.

Find the perimeter of the shaded region.[3]

b.
Answer/Explanation

Markscheme

correct substitution     (A1)

eg\(\;\;\;10(1.2)\)

\(ACB\) is \(12{\text{ (cm)}}\)     A1     N2

[2 marks]

a.

valid approach to find major arc     (M1)

eg\(\;\;\;\)circumference \( – {\text{AB}}\), major angle \({\text{AOB}} \times {\text{radius}}\)

correct working for arc length     (A1)

eg\(\;\;\;2\pi (10) – 12,{\text{ }}10(2 \times 3.142 – 1.2),{\text{ }}2\pi (10) – 12 + 20\)

perimeter is \(20\pi  + 8\;\;\;( = 70.8){\text{ (cm)}}\)     A1     N2

[3 marks]

Total [5 marks]

b.

Question

The following diagram shows triangle ABC, with \({\text{AB}} = 3{\text{ cm}}\), \({\text{BC}} = 8{\text{ cm}}\), and \({\rm{A\hat BC = }}\frac{\pi }{3}\).

N17/5/MATME/SP1/ENG/TZ0/04

Show that \({\text{AC}} = 7{\text{ cm}}\).[4]

a.

The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.

N17/5/MATME/SP1/ENG/TZ0/04.b

Find the exact perimeter of this shape.[3]

b.
Answer/Explanation

Markscheme

evidence of choosing the cosine rule     (M1)

eg\(\,\,\,\,\,\)\({c^2} = {a^2} + {b^2} – ab\cos C\)

correct substitution into RHS of cosine rule     (A1)

eg\(\,\,\,\,\,\)\({3^2} + {8^2} – 2 \times 3 \times 8 \times \cos \frac{\pi }{3}\)

evidence of correct value for \(\cos \frac{\pi }{3}\) (may be seen anywhere, including in cosine rule)     A1

eg\(\,\,\,\,\,\)\(\cos \frac{\pi }{3} = \frac{1}{2},{\text{ A}}{{\text{C}}^2} = 9 + 64 – \left( {48 \times \frac{1}{2}} \right),{\text{ }}9 + 64 – 24\)

correct working clearly leading to answer     A1

eg\(\,\,\,\,\,\)\({\text{A}}{{\text{C}}^2} = 49,{\text{ }}b = \sqrt {49} \)

\({\text{AC}} = 7{\text{ (cm)}}\)     AG     N0

Note:     Award no marks if the only working seen is \({\text{A}}{{\text{C}}^2} = 49\) or \({\text{AC}} = \sqrt {49} \) (or similar).

[4 marks]

a.

correct substitution for semicircle     (A1)

eg\(\,\,\,\,\,\)\({\text{semicircle}} = \frac{1}{2}(2\pi  \times 3.5),{\text{ }}\frac{1}{2} \times \pi  \times 7,{\text{ }}3.5\pi \)

valid approach (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\({\text{perimeter}} = {\text{AB}} + {\text{BC}} + {\text{semicircle, }}3 + 8 + \left( {\frac{1}{2} \times 2 \times \pi  \times \frac{7}{2}} \right),{\text{ }}8 + 3 + 3.5\pi \)

\(11 + \frac{7}{2}\pi {\text{ }}( = 3.5\pi  + 11){\text{ (cm)}}\)     A1     N2

[3 marks]

b.

Question

[Maximum mark: 8] [with / without GDC]
O is the centre of the circle which has a radius of 10 cm. The size of AÔB is 1.5 rad.

(a) Find the lengths of the minor arc AB and of the major arc AB. [3]
(b) Find the areas of the minor sector (shaded region) and of the major sector. [3]
(c) Find the perimeters of the minor sector (shaded region) and of the major sector. [2]

Answer/Explanation

Ans:
(a) \(l_{\text {MINOR }}=(10)(1.5)=15 \quad l_{\text {MAJOR }}=(10)(2 \pi-1.5)=20 \pi-15\)
(b) \(A_{M I N O R}=\frac{1}{2}(10)^{2}(1.5)=75 \quad A_{M A J O R}=\frac{1}{2}(10)^{2}(2 \pi-1.5)=200 \pi-75\)
(c) \(P_{\text {MINOR }}=l_{\text {MINOR }}+2 r=35 \quad P_{\text {MAJOR }}=l_{\text {MAJOR }}+2 r=20 \pi+5\)

Question

[Maximum mark: 6] [without GDC]
The diagram below shows a triangle and two arcs of circles.
The triangle ABC is a right-angled isosceles triangle, with AB = AC = 2. The point P is the midpoint of [BC].
The arc BDC is part of a circle with centre A.
The arc BEC is part of a circle with centre P.

(a) Calculate the area of the segment BDCP. [3]
(b) Calculate the area of the shaded region BECD. [3]

Answer/Explanation

Ans:
(a)   area of sector ΑΒDC = \(\frac{1}{4} \pi(2)^{2}=\pi\)
area of segment BDCP = π – area of \(\Delta\)ABC = π – 2
(b)  \(\mathrm{BP}=\sqrt{2}\)
area of semicircle of radius BP = \(\frac{1}{2} \pi(\sqrt{2})^{2}=\pi\)
area of shaded region = π – (π – 2) = 2

Scroll to Top