Question
Consider \(f(x) = \frac{1}{3}{x^3} + 2{x^2} – 5x\) . Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.
Find \(f'(x)\) .
Find the x-coordinate of M.
Find the x-coordinate of N.
The line L is the tangent to the curve of f at \((3{\text{, }}12)\). Find the equation of L in the form \(y = ax + b\) .
Answer/Explanation
Markscheme
\(f'(x) = {x^2} + 4x – 5\)Â Â Â Â A1A1A1 Â Â N3
[3 marks]
evidence of attempting to solve \(f'(x) = 0\)Â Â Â Â (M1)
evidence of correct working    A1
e.g. \((x + 5)(x – 1)\) , \(\frac{{ – 4 \pm \sqrt {16 + 20} }}{2}\) , sketch
\(x = – 5\), \(x = 1\)Â Â Â Â (A1)
so \(x = – 5\)Â Â Â Â A1Â Â Â Â N2
[4 marks]
METHOD 1
\(f”(x) = 2x + 4\) (may be seen later)Â Â Â Â A1
evidence of setting second derivative = 0Â Â Â Â (M1)
e.g. \(2x + 4 = 0\)
\(x = – 2\)Â Â Â Â A1Â Â Â Â N2
METHOD 2
evidence of use of symmetry    (M1)
e.g. midpoint of max/min, reference to shape of cubic
correct calculation    A1
e.g. \(\frac{{ – 5 + 1}}{2}\)
\(x = – 2\)Â Â Â Â A1Â Â Â Â N2
[3 marks]
attempting to find the value of the derivative when \(x = 3\)Â Â Â Â (M1)
\(f'(3) = 16\)Â Â Â Â A1
valid approach to finding the equation of a line    M1
e.g. \(y – 12 = 16(x – 3)\) , \(12 = 16 \times 3 + b\)
\(y = 16x – 36\)Â Â Â Â A1Â Â Â Â N2
[4 marks]
Question
A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.
The point P(x , y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is \(\theta \) radians, where \(0 \le \theta \le \frac{\pi }{2}\) .
Write down an expression in terms of \(\theta \) for
(i)Â Â Â Â \(x\) ;
(ii) Â Â \(y\) .
Let the area of the rectangle be A.
Show that \(A = 18\sin 2\theta \) .
(i)Â Â Â Â Find \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }}\) .
(ii)Â Â Â Hence, find the exact value of \(\theta \) which maximizes the area of the rectangle.
(iii)Â Â Use the second derivative to justify that this value of \(\theta \) does give a maximum.
Answer/Explanation
Markscheme
(i) \(x = 3\cos \theta \)Â Â Â Â A1Â Â Â Â N1Â
(ii) \(y = 3\sin \theta \)Â Â Â Â Â A1 Â Â N1
[2 marks]
finding area    (M1)
e.g. \(A = 2x \times 2y\) , \(A = 8 \times \frac{1}{2}bh\)Â
substituting    A1
e.g. \(A = 4 \times 3\sin \theta \times 3\cos \theta \) , \(8 \times \frac{1}{2} \times 3\cos \theta \times 3\sin \theta \)
\(A = 18(2\sin \theta \cos \theta )\)Â Â Â A1
\(A = 18\sin 2\theta \)Â Â Â Â AGÂ Â Â Â N0
[3 marks]
(i) \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 36\cos 2\theta \)Â Â Â Â Â A2Â Â Â Â N2Â
(ii) for setting derivative equal to 0Â Â Â Â (M1)
e.g. \(36\cos 2\theta = 0\) , \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 0\)
\(2\theta = \frac{\pi }{2}\)    (A1)
\(\theta = \frac{\pi }{4}\)    A1    N2
(iii) valid reason (seen anywhere)Â Â Â Â R1
e.g. at \(\frac{\pi }{4}\), \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} < 0\)Â ; maximum when \(f”(x) < 0\)
finding second derivative \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} =Â – 72\sin 2\theta \)Â Â Â Â A1
evidence of substituting \(\frac{\pi }{4}\)Â Â Â Â M1
e.g. \( – 72\sin \left( {2 \times \frac{\pi }{4}} \right)\) , \( – 72\sin \left( {\frac{\pi }{2}} \right)\) , \( – 72\)
\(\theta = \frac{\pi }{4}\) produces the maximum area    AG    N0
[8 marks]
Question
Consider \(f(x) = {x^2} + \frac{p}{x}\) , \(x \ne 0\) , where p is a constant.
Find \(f'(x)\) .
There is a minimum value of \(f(x)\) when \(x = – 2\) . Find the value of \(p\) .
Answer/Explanation
Markscheme
\(f'(x) = 2x – \frac{p}{{{x^2}}}\)Â Â Â Â A1A1Â Â Â Â N2
Note: Award A1 for \(2x\)Â , A1 for \( – \frac{p}{{{x^2}}}\)Â .
[2 marks]
evidence of equating derivative to 0 (seen anywhere)Â Â Â Â (M1)
evidence of finding \(f'( – 2)\)Â (seen anywhere)Â Â Â Â (M1)
correct equation    A1
e.g. \( – 4 – \frac{p}{4} = 0\) , \( – 16 – p = 0\)
\(p = – 16\)Â Â Â Â A1 Â Â N3
[4 marks]
Question
Let \(f(x) = 3 + \frac{{20}}{{{x^2} – 4}}\) , for \(x \ne \pm 2\) . The graph of f is given below.
The y-intercept is at the point A.
(i) Â Â Find the coordinates of A.
(ii)Â Â Â Show that \(f'(x) = 0\) at A.
The second derivative \(f”(x) = \frac{{40(3{x^2} + 4)}}{{{{({x^2} – 4)}^3}}}\)Â . Use this to
(i)Â Â Â Â justify that the graph of f has a local maximum at A;
(ii)Â Â Â explain why the graph of f does not have a point of inflexion.
Describe the behaviour of the graph of \(f\) for large \(|x|\) .
Write down the range of \(f\) .
Answer/Explanation
Markscheme
(i) coordinates of A are \((0{\text{, }} – 2)\) Â Â Â A1A1Â Â Â Â N2
(ii) derivative of \({x^2} – 4 = 2x\) (seen anywhere)Â Â Â Â (A1)
evidence of correct approach    (M1)
e.g. quotient rule, chain rule
finding \(f'(x)\)Â Â Â Â Â A2
e.g. \(f'(x) = 20 \times ( – 1) \times {({x^2} – 4)^{ – 2}} \times (2x)\) , \(\frac{{({x^2} – 4)(0) – (20)(2x)}}{{{{({x^2} – 4)}^2}}}\)
substituting \(x = 0\) into \(f'(x)\) (do not accept solving \(f'(x) = 0\) ) Â Â Â M1
at A \(f'(x) = 0\)Â Â Â Â Â AGÂ Â Â Â N0
[7 marks]
(i) reference to \(f'(x) = 0\)Â (seen anywhere)Â Â Â Â (R1)
reference to \(f”(0)\)Â is negative (seen anywhere)Â Â Â Â R1
evidence of substituting \(x = 0\)Â into \(f”(x)\)Â Â Â Â Â M1
finding \(f”(0) = \frac{{40 \times 4}}{{{{( – 4)}^3}}}\) \(\left( { = – \frac{5}{2}} \right)\)Â Â Â Â Â A1
then the graph must have a local maximum    AG
(ii) reference to \(f”(x) = 0\) at point of inflexion    (R1)
recognizing that the second derivative is never 0Â Â Â Â A1Â Â Â Â N2
e.g. \(40(3{x^2} + 4) \ne 0\) , \(3{x^2} + 4 \ne 0\) , \({x^2} \ne – \frac{4}{3}\) , the numerator is always positive
Note: Do not accept the use of the first derivative in part (b).
[6 marks]
correct (informal) statement, including reference to approaching \(y = 3\)Â Â Â Â Â A1Â Â Â Â N1
e.g. getting closer to the line \(y = 3\) , horizontal asymptote at \(y = 3\)
[1 mark]
correct inequalities, \(y \le – 2\)Â , \(y > 3\)Â , FT from (a)(i) and (c)Â Â Â Â A1A1Â Â Â Â N2
[2 marks]
Question
In this question, you are given that \(\cos \frac{\pi }{3} = \frac{1}{2}\)Â , and \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\)Â .
The displacement of an object from a fixed point, O is given by \(s(t) = t – \sin 2t\) for \(0 \le t \le \pi \) .
Find \(s'(t)\) .
In this interval, there are only two values of t for which the object is not moving. One value is \(t = \frac{\pi }{6}\) .
Find the other value.
Show that \(s'(t) > 0\) between these two values of t .
Find the distance travelled between these two values of t .
Answer/Explanation
Markscheme
\(s'(t) = 1 – 2\cos 2t\)Â Â Â A1A2 Â Â N3
Note: Award A1 for 1, A2 for \(- 2\cos 2t\)Â .
[3 marks]
evidence of valid approach    (M1)
e.g. setting \(s'(t) = 0\)
correct working    A1
e.g. \(2\cos 2t = 1\) , \(\cos 2t = \frac{1}{2}\)
\(2t = \frac{\pi }{3}\) , \(\frac{{5\pi }}{3}\) , \(\ldots \)Â Â Â Â (A1)
\(t = \frac{{5\pi }}{6}\)Â Â Â Â A1 Â Â N3Â
[4 marks]
evidence of valid approach    (M1)
e.g. choosing a value in the interval \(\frac{\pi }{6} < t < \frac{{5\pi }}{6}\)
correct substitution    A1
e.g. \(s’\left( {\frac{\pi }{2}} \right) = 1 – 2\cos \pi \)
\(s’\left( {\frac{\pi }{2}} \right) = 3\)Â Â Â Â A1
\(s'(t) > 0\)Â Â Â Â AG Â Â N0
[3 marks]
evidence of approach using s or integral of \(s’\)    (M1)
e.g. \(\int {s'(t){\rm{d}}t} \) ; \(s\left( {\frac{{5\pi }}{6}} \right)\) , \(s\left( {\frac{\pi }{6}} \right)\) ; \(\left[ {t – \sin 2t} \right]_{\frac{\pi }{6}}^{\frac{{5\pi }}{6}}\)
substituting values and subtracting    (M1)
e.g. \(s\left( {\frac{{5\pi }}{6}} \right) – s\left( {\frac{\pi }{6}} \right)\) , \(\left( {\frac{\pi }{6} – \frac{{\sqrt 3 }}{2}} \right) – \left( {\frac{{5\pi }}{6} – \left( { – \frac{{\sqrt 3 }}{2}} \right)} \right)\)
correct substitution    A1
e.g. \(\frac{{5\pi }}{6} – \sin \frac{{5\pi }}{3} – \left[ {\frac{\pi }{6} – \sin \frac{\pi }{3}} \right]\) , \(\left( {\frac{{5\pi }}{6} – \left( { – \frac{{\sqrt 3 }}{2}} \right)} \right) – \left( {\frac{\pi }{6} – \frac{{\sqrt 3 }}{2}} \right)\)
distance is \(\frac{{2\pi }}{3} + \sqrt 3 \)Â Â Â Â Â A1A1Â Â Â Â N3
Note: Award A1 for \(\frac{{2\pi }}{3}\) , A1 for \(\sqrt 3 \) .
[5 marks]
Question
Let \(f(x) = \frac{{6x}}{{x + 1}}\) , for \(x > 0\) .
Find \(f'(x)\) .
Let \(g(x) = \ln \left( {\frac{{6x}}{{x + 1}}} \right)\) , for \(x > 0\) .
Show that \(g'(x) = \frac{1}{{x(x + 1)}}\) .
Let \(h(x) = \frac{1}{{x(x + 1)}}\) . The area enclosed by the graph of h , the x-axis and the lines \(x = \frac{1}{5}\) and \(x = k\) is \(\ln 4\) . Given that \(k > \frac{1}{5}\) , find the value of k .
Answer/Explanation
Markscheme
METHOD 1
evidence of choosing quotient rule    (M1)
e.g. \(\frac{{u’v – uv’}}{{{v^2}}}\)
evidence of correct differentiation (must be seen in quotient rule)Â Â Â Â (A1)(A1)
e.g. \(\frac{{\rm{d}}}{{{\rm{d}}x}}(6x) = 6\) , \(\frac{{\rm{d}}}{{{\rm{d}}x}}(x + 1) = 1\)
correct substitution into quotient rule    A1
e.g. \(\frac{{(x + 1)6 – 6x}}{{{{(x + 1)}^2}}}\) , \(\frac{{6x + 6 – 6x}}{{{{(x + 1)}^2}}}\)
\(f'(x) = \frac{6}{{{{(x + 1)}^2}}}\)Â Â Â A1Â Â Â Â N4
[5 marks]
METHOD 2
evidence of choosing product rule    (M1)
e.g. \(6x{(x + 1)^{ – 1}}\) , \(uv’ + vu’\)
evidence of correct differentiation (must be seen in product rule)Â Â Â Â (A1)(A1)
e.g. \(\frac{{\rm{d}}}{{{\rm{d}}x}}(6x) = 6\) , \(\frac{{\rm{d}}}{{{\rm{d}}x}}{(x + 1)^{ – 1}} = – 1{(x + 1)^{ – 2}} \times 1\)
correct working    A1
e.g. \(6x \times – {(x + 1)^{ – 2}} + {(x + 1)^{ – 1}} \times 6\) , \(\frac{{ – 6x + 6(x + 1)}}{{{{(x + 1)}^2}}}\)
\(f'(x) = \frac{6}{{{{(x + 1)}^2}}}\)Â Â A1Â Â Â Â N4
[5 marks]
METHOD 1
evidence of choosing chain rule    (M1)
e.g. formula, \(\frac{1}{{\left( {\frac{{6x}}{{x + 1}}} \right)}} \times \left( {\frac{{6x}}{{x + 1}}} \right)\)
correct reciprocal of \(\frac{1}{{\left( {\frac{{6x}}{{x + 1}}} \right)}}\)Â is \(\frac{{x + 1}}{{6x}}\)Â (seen anywhere)Â Â Â Â A1
correct substitution into chain rule    A1
e.g. \(\frac{1}{{\left( {\frac{{6x}}{{x + 1}}} \right)}} \times \frac{6}{{{{(x + 1)}^2}}}\) , \(\left( {\frac{6}{{{{(x + 1)}^2}}}} \right)\left( {\frac{{x + 1}}{{6x}}} \right)\)
working that clearly leads to the answer    A1
e.g. \(\left( {\frac{6}{{(x + 1)}}} \right)\left( {\frac{1}{{6x}}} \right)\) , \(\left( {\frac{1}{{{{(x + 1)}^2}}}} \right)\left( {\frac{{x + 1}}{x}} \right)\) , \(\frac{{6(x + 1)}}{{6x{{(x + 1)}^2}}}\)
\(g'(x) = \frac{1}{{x(x + 1)}}\)Â Â Â Â AGÂ Â Â Â N0
[4 marks]
METHOD 2
attempt to subtract logs    (M1)
e.g. \(\ln a – \ln b\) , \(\ln 6x – \ln (x + 1)\)
correct derivatives (must be seen in correct expression)Â Â Â Â A1A1
e.g. \(\frac{6}{{6x}} – \frac{1}{{x + 1}}\) , \(\frac{1}{x} – \frac{1}{{x + 1}}\)
working that clearly leads to the answer    A1
e.g. \(\frac{{x + 1 – x}}{{x(x + 1)}}\) , \(\frac{{6x + 6 – 6x}}{{6x(x + 1)}}\) , \(\frac{{6(x + 1 – x)}}{{6x(x + 1)}}\)
\(g'(x) = \frac{1}{{x(x + 1)}}\)Â Â Â Â AGÂ Â Â Â N0
[4 marks]
valid method using integral of h(x) (accept missing/incorrect limits or missing \({\text{d}}x\) )    (M1)
e.g. \({\rm{area}} = \int_{\frac{1}{5}}^k {h(x){\rm{d}}x} \) , \(\int{\left( {\frac{1}{{x(x + 1)}}} \right)} \)Â
recognizing that integral of derivative will give original function    (R1)
e.g. \(\int{\left( {\frac{1}{{x(x + 1)}}} \right)} {\rm{d}}x = \ln \left( {\frac{{6x}}{{x + 1}}} \right)\)
correct substitution and subtraction    A1
e.g. \(\ln \left( {\frac{{6k}}{{k + 1}}} \right) – \ln \left( {\frac{{6 \times \frac{1}{5}}}{{\frac{1}{5} + 1}}} \right)\) , \(\ln \left( {\frac{{6k}}{{k + 1}}} \right) – \ln (1)\)
setting their expression equal to \(\ln 4\) Â Â Â (M1)Â
e.g. \(\ln \left( {\frac{{6k}}{{k + 1}}} \right) – \ln (1) = \ln 4\) , \(\ln \left( {\frac{{6k}}{{k + 1}}} \right) = \ln 4\) , \(\int_{\frac{1}{5}}^k {h(x){\rm{d}}x = \ln 4} \)
correct equation without logs    A1
e.g.\(\frac{{6k}}{{k + 1}} = 4\) , \(6k = 4(k + 1)\)Â
correct working    (A1)
e.g. \(6k = 4k + 4\) , \(2k = 4\)
\(k = 2\)Â Â Â A1 Â Â N4
[7 marks]
Question
Let \(f(x) = \sin x + \frac{1}{2}{x^2} – 2x\) , for \(0 \le x \le \pi \) .
Let \(g\) be a quadratic function such that \(g(0) = 5\) . The line \(x = 2\) is the axis of symmetry of the graph of \(g\) .
The function \(g\) can be expressed in the form \(g(x) = a{(x – h)^2} + 3\) .
Find \(f'(x)\) .
Find \(g(4)\) .
(i)Â Â Â Â Write down the value of \(h\) .
(ii)Â Â Â Â Find the value of \(a\) .
Find the value of \(x\) for which the tangent to the graph of \(f\) is parallel to the tangent to the graph of \(g\) .
Answer/Explanation
Markscheme
\(f'(x) = \cos x + x – 2\)Â Â Â Â A1A1A1Â Â Â Â N3
Note: Award A1 for each term.
[3 marks]
recognizing \(g(0) = 5\)Â gives the point (\(0\), \(5\))Â Â Â Â (R1)
recognize symmetry    (M1)
eg vertex, sketch
\(g(4) = 5\)Â Â Â Â A1Â Â Â Â N3
[3 marks]
(i)Â Â Â Â \(h = 2\)Â Â Â Â A1 N1
(ii)    substituting into \(g(x) = a{(x – 2)^2} + 3\) (not the vertex)    (M1)
eg  \(5 = a{(0 – 2)^2} + 3\) , \(5 = a{(4 – 2)^2} + 3\)
working towards solution    (A1)
eg  \(5 = 4a + 3\) , \(4a = 2\)
\(a = \frac{1}{2}\)Â Â Â Â A1Â Â Â Â N2
[4 marks]
\(g(x) = \frac{1}{2}{(x – 2)^2} + 3 = \frac{1}{2}{x^2} – 2x + 5\)
correct derivative of \(g\)Â Â Â Â A1A1
eg  \(2 \times \frac{1}{2}(x – 2)\) , \(x – 2\)
evidence of equating both derivatives    (M1)
eg  \(f’ = g’\)
correct equation    (A1)
eg  \(\cos x + x – 2 = x – 2\)
working towards a solution    (A1)
eg  \(\cos x = 0\) , combining like terms
\(x = \frac{\pi }{2}\)Â Â Â A1Â Â Â Â N0
Note: Do not award final A1 if additional values are given.
[6 marks]
Question
Let \(f(x) = p{x^3} + p{x^2} + qx\).
Find \(f'(x)\).
Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).
Answer/Explanation
Markscheme
\(f'(x) = 3p{x^2} + 2px + q\) Â Â Â A2 Â Â N2
Â
Note: Â Â Award A1 if only 1 error.
Â
[2 marks]
evidence of discriminant (must be seen explicitly, not in quadratic formula) Â Â Â (M1)
eg   \({b^2} – 4ac\)
correct substitution into discriminant (may be seen in inequality) Â Â Â A1
eg   \({(2p)^2} – 4 \times 3p \times q,{\text{ }}4{p^2} – 12pq\)
\(f'(x) \geqslant 0\) then \(f’\) has two equal roots or no roots    (R1)
recognizing discriminant less or equal than zero    R1
eg   \(\Delta  \leqslant 0,{\text{ }}4{p^2} – 12pq \leqslant 0\)
correct working that clearly leads to the required answer    A1
eg   \({p^2} – 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)
\({p^2} \leqslant 3pq\) Â Â Â AG Â Â N0
[5 marks]
Question
Let \(f(x) = 3 + \frac{{20}}{{{x^2} – 4}}\) , for \(x \ne \pm 2\) . The graph of f is given below.
The y-intercept is at the point A.
(i) Â Â Find the coordinates of A.
(ii)Â Â Â Show that \(f'(x) = 0\) at A.
The second derivative \(f”(x) = \frac{{40(3{x^2} + 4)}}{{{{({x^2} – 4)}^3}}}\)Â . Use this to
(i)Â Â Â Â justify that the graph of f has a local maximum at A;
(ii)Â Â Â explain why the graph of f does not have a point of inflexion.
Describe the behaviour of the graph of \(f\) for large \(|x|\) .
Write down the range of \(f\) .
Answer/Explanation
Markscheme
(i) coordinates of A are \((0{\text{, }} – 2)\) Â Â Â A1A1Â Â Â Â N2
(ii) derivative of \({x^2} – 4 = 2x\) (seen anywhere)Â Â Â Â (A1)
evidence of correct approach    (M1)
e.g. quotient rule, chain rule
finding \(f'(x)\)Â Â Â Â Â A2
e.g. \(f'(x) = 20 \times ( – 1) \times {({x^2} – 4)^{ – 2}} \times (2x)\) , \(\frac{{({x^2} – 4)(0) – (20)(2x)}}{{{{({x^2} – 4)}^2}}}\)
substituting \(x = 0\) into \(f'(x)\) (do not accept solving \(f'(x) = 0\) ) Â Â Â M1
at A \(f'(x) = 0\)Â Â Â Â Â AGÂ Â Â Â N0
[7 marks]
(i) reference to \(f'(x) = 0\)Â (seen anywhere)Â Â Â Â (R1)
reference to \(f”(0)\)Â is negative (seen anywhere)Â Â Â Â R1
evidence of substituting \(x = 0\)Â into \(f”(x)\)Â Â Â Â Â M1
finding \(f”(0) = \frac{{40 \times 4}}{{{{( – 4)}^3}}}\) \(\left( { = – \frac{5}{2}} \right)\)Â Â Â Â Â A1
then the graph must have a local maximum    AG
(ii) reference to \(f”(x) = 0\) at point of inflexion    (R1)
recognizing that the second derivative is never 0Â Â Â Â A1Â Â Â Â N2
e.g. \(40(3{x^2} + 4) \ne 0\) , \(3{x^2} + 4 \ne 0\) , \({x^2} \ne – \frac{4}{3}\) , the numerator is always positive
Note: Do not accept the use of the first derivative in part (b).
[6 marks]
correct (informal) statement, including reference to approaching \(y = 3\)Â Â Â Â Â A1Â Â Â Â N1
e.g. getting closer to the line \(y = 3\) , horizontal asymptote at \(y = 3\)
[1 mark]
correct inequalities, \(y \le – 2\)Â , \(y > 3\)Â , FT from (a)(i) and (c)Â Â Â Â A1A1Â Â Â Â N2
[2 marks]