IB Math Analysis & Approaches Question bank-Topic: SL 5.6 Differentiation of a sum and a multiple of these functions SL Paper 1

Question

Consider \(f(x) = \frac{1}{3}{x^3} + 2{x^2} – 5x\) . Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.


Find \(f'(x)\) .

[3]
a.

Find the x-coordinate of M.

[4]
b.

Find the x-coordinate of N.

[3]
c.

The line L is the tangent to the curve of f at \((3{\text{, }}12)\). Find the equation of L in the form \(y = ax + b\) .

[4]
d.
Answer/Explanation

Markscheme

\(f'(x) = {x^2} + 4x – 5\)     A1A1A1     N3

[3 marks]

a.

evidence of attempting to solve \(f'(x) = 0\)     (M1)

evidence of correct working     A1

e.g. \((x + 5)(x – 1)\) , \(\frac{{ – 4 \pm \sqrt {16 + 20} }}{2}\) , sketch

\(x = – 5\), \(x = 1\)     (A1)

so \(x = – 5\)     A1     N2

[4 marks]

b.

METHOD 1

\(f”(x) = 2x + 4\) (may be seen later)     A1

evidence of setting second derivative = 0     (M1)

e.g. \(2x + 4 = 0\)

\(x = – 2\)     A1     N2

METHOD 2

evidence of use of symmetry     (M1)

e.g. midpoint of max/min, reference to shape of cubic

correct calculation     A1

e.g. \(\frac{{ – 5 + 1}}{2}\)

\(x = – 2\)     A1     N2

[3 marks]

c.

attempting to find the value of the derivative when \(x = 3\)     (M1)

\(f'(3) = 16\)     A1

valid approach to finding the equation of a line     M1

e.g. \(y – 12 = 16(x – 3)\) , \(12 = 16 \times 3 + b\)

\(y = 16x – 36\)     A1     N2

[4 marks]

d.

Question

Consider \(f(x) = {x^2} + \frac{p}{x}\) , \(x \ne 0\) , where p is a constant.

Find \(f'(x)\) .

[2]
a.

There is a minimum value of \(f(x)\) when \(x = – 2\) . Find the value of \(p\) .

[4]
b.
Answer/Explanation

Markscheme

\(f'(x) = 2x – \frac{p}{{{x^2}}}\)     A1A1     N2

Note: Award A1 for \(2x\) , A1 for \( – \frac{p}{{{x^2}}}\) .

[2 marks]

a.

evidence of equating derivative to 0 (seen anywhere)     (M1)

evidence of finding \(f'( – 2)\) (seen anywhere)     (M1)

correct equation     A1

e.g. \( – 4 – \frac{p}{4} = 0\) , \( – 16 – p = 0\)

\(p = – 16\)     A1     N3

[4 marks]

b.

Question

Let \(f(x) = p{x^3} + p{x^2} + qx\).

Find \(f'(x)\).

[2]
a.

Given that \(f'(x) \geqslant 0\), show that \({p^2} \leqslant 3pq\).

[5]
b.
Answer/Explanation

Markscheme

\(f'(x) = 3p{x^2} + 2px + q\)     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     \({b^2} – 4ac\)

correct substitution into discriminant (may be seen in inequality)     A1

eg     \({(2p)^2} – 4 \times 3p \times q,{\text{ }}4{p^2} – 12pq\)

\(f'(x) \geqslant 0\) then \(f’\) has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     \(\Delta  \leqslant 0,{\text{ }}4{p^2} – 12pq \leqslant 0\)

correct working that clearly leads to the required answer     A1

eg     \({p^2} – 3pq \leqslant 0,{\text{ }}4{p^2} \leqslant 12pq\)

\({p^2} \leqslant 3pq\)     AG     N0

[5 marks]

b.
Scroll to Top