Home / IB Math Analysis & Approaches Question bank-Topic: SL 5.6 The chain rule for composite functions SL Paper 1

IB Math Analysis & Approaches Question bank-Topic: SL 5.6 The chain rule for composite functions SL Paper 1

Question

Let  \(f:x \mapsto {\sin ^3}x\) .

(i) Write down the range of the function f .

(ii) Consider \(f(x) = 1\) , \(0 \le x \le 2\pi \) . Write down the number of solutions to this equation. Justify your answer.

[5]
a.

Find \(f'(x)\) , giving your answer in the form \(a{\sin ^p}x{\cos ^q}x\) where \(a{\text{, }}p{\text{, }}q \in \mathbb{Z}\) .

[2]
b.

Let \(g(x) = \sqrt 3 \sin x{(\cos x)^{\frac{1}{2}}}\) for \(0 \le x \le \frac{\pi }{2}\) . Find the volume generated when the curve of g is revolved through \(2\pi \) about the x-axis.

[7]
c.
Answer/Explanation

Markscheme

(i) range of f is \([ – 1{\text{, }}1]\) , \(( – 1 \le f(x) \le 1)\)     A2     N2

(ii) \({\sin ^3}x \Rightarrow 1 \Rightarrow \sin x = 1\)     A1

justification for one solution on \([0{\text{, }}2\pi ]\)    R1

e.g. \(x = \frac{\pi }{2}\) , unit circle, sketch of \(\sin x\)

1 solution (seen anywhere)     A1     N1

[5 marks]

a.

\(f'(x) = 3{\sin ^2}x\cos x\)     A2     N2

[2 marks]

b.

using \(V = \int_a^b {\pi {y^2}{\rm{d}}x} \)     (M1)

\(V = \int_0^{\frac{\pi }{2}} {\pi (\sqrt 3 } \sin x{\cos ^{\frac{1}{2}}}x{)^2}{\rm{d}}x\)     (A1)

\( = \pi \int_0^{\frac{\pi }{2}} {3{{\sin }^2}x\cos x{\rm{d}}x} \)     A1

\(V = \pi \left[ {{{\sin }^3}x} \right]_0^{\frac{\pi }{2}}\) \(\left( { = \pi \left( {{{\sin }^3}\left( {\frac{\pi }{2}} \right) – {{\sin }^3}0} \right)} \right)\)     A2

evidence of using \(\sin \frac{\pi }{2} = 1\) and \(\sin 0 = 0\)     (A1)

e.g. \(\pi \left( {1 – 0} \right)\)

\(V = \pi \)     A1     N1

[7 marks]

c.

Question

Let \(f(x) = {{\rm{e}}^{ – 3x}}\) and \(g(x) = \sin \left( {x – \frac{\pi }{3}} \right)\) .

Write down

(i)     \(f'(x)\) ;

(ii)    \(g'(x)\) .

[2]
a.

Let \(h(x) = {{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right)\) . Find the exact value of \(h’\left( {\frac{\pi }{3}} \right)\) .

[4]
b.
Answer/Explanation

Markscheme

(i) \( – 3{{\rm{e}}^{ – 3x}}\)     A1     N1

(ii) \(\cos \left( {x – \frac{\pi }{3}} \right)\)     A1     N1

[4 marks]

a.

evidence of choosing product rule     (M1)

e.g. \(uv’ + vu’\)

correct expression     A1

e.g. \( – 3{{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3x}}\cos \left( {x – \frac{\pi }{3}} \right)\)

complete correct substitution of \(x = \frac{\pi }{3}\)     (A1)

e.g. \( – 3{{\rm{e}}^{ – 3\frac{\pi }{3}}}\sin \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3\frac{\pi }{3}}}\cos \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right)\)        

\(h’\left( {\frac{\pi }{3}} \right) = {{\rm{e}}^{ – \pi }}\)     A1     N3

[4 marks]

b.

Question

Let \(g(x) = 2x\sin x\) .

Find \(g'(x)\) .

[4]
a.

Find the gradient of the graph of g at \(x = \pi \) .

[3]
b.
Answer/Explanation

Markscheme

evidence of choosing the product rule     (M1)

e.g. \(uv’ + vu’\)

correct derivatives \(\cos x\) , 2     (A1)(A1)

\(g'(x) = 2x\cos x + 2\sin x\)     A1     N4

[4 marks]

a.

attempt to substitute into gradient function     (M1)

e.g. \(g'(\pi )\)

correct substitution     (A1)

e.g. \(2\pi \cos \pi  + 2\sin \pi \)

\({\text{gradient}} = – 2\pi \)     A1     N2

[3 marks]

b.

Question

Consider f(x), g(x) and h(x), for x∈\(\mathbb{R}\) where h(x) = \(\left( {f \circ g} \right)\)(x).

Given that g(3) = 7 , g′ (3) = 4 and f ′ (7) = −5 , find the gradient of the normal to the curve of h at x = 3.

Answer/Explanation

Markscheme

recognizing the need to find h′      (M1)

recognizing the need to find h′ (3) (seen anywhere)      (M1)

evidence of choosing chain rule        (M1)

eg   \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}u}} \times \frac{{{\text{d}}u}}{{{\text{d}}x}},\,\,f’\left( {g\left( 3 \right)} \right) \times g’\left( 3 \right),\,\,f’\left( g \right) \times g’\)

correct working       (A1)

eg  \(f’\left( 7 \right) \times 4,\,\, – 5 \times 4\)

\(h’\left( 3 \right) =  – 20\)      (A1)

evidence of taking their negative reciprocal for normal       (M1)

eg  \( – \frac{1}{{h’\left( 3 \right)}},\,\,{m_1}{m_2} =  – 1\)

gradient of normal is \(\frac{1}{{20}}\)      A1 N4

[7 marks]

Question

Find the derivative of each function below.

Answer/Explanation

Ans:

Solutions are shown in the question.

Scroll to Top