Home / IB Math Analysis & Approaches Question bank-Topic: SL 5.8 Local maximum and minimum points SL Paper 1

IB Math Analysis & Approaches Question bank-Topic: SL 5.8 Local maximum and minimum points SL Paper 1

Question

The function h is defined by h(x) = \(2xe^x\) + 3, for \(x \epsilon \mathbb{R}\). The following diagram shows part of the graph of h, which has a local minimum at point A.

(a) Find the value of the y-intercept.

(b) Find h′(x).

(c) Hence, find the coordinates of A.

(d) (i) Show that h′′(x) = (2x + 4)\(e^x\).
(ii) Find the values of x for which the graph of h is concave-up.

Answer/Explanation

Answer:

(a) substitution of x = 0
(y = 3) (accept (0, 3 ))

(b) evidence of using the product rule
h'(x) = 2\(e^x\) + 2x\(e^x\)

(c) setting their derivative equal to zero
correct working
\(2e^x\) (1 + x) (=0) OR -2x = 2
x = -1 (seen anywhere, and must follow on from their derivative)
substituting their value of x into h(x)
\(y = -\frac{2}{e} +3\) (= – 2\(e^{-1} + 3\))
A(-1, – \(\frac{2}{e}\) + 3)

(d) (i) h”(x) = \(2e^x + 2e^x + 2xe^x\) OR \(2e^x + 2e^x (1 + x)\)
h”(x) = (2x + 4)\(e^x\)
(ii) recognition that h”>0 OR attempt to find point of inflexion
since \(e^x\) > 0, 2x + 4 > 0 OR 2x + 4 = 0 (⇒ x = -2)
x > -2

Question

Consider \(f(x) = \frac{1}{3}{x^3} + 2{x^2} – 5x\) . Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.


Find \(f'(x)\) .

[3]
a.

Find the x-coordinate of M.

[4]
b.

Find the x-coordinate of N.

[3]
c.

The line L is the tangent to the curve of f at \((3{\text{, }}12)\). Find the equation of L in the form \(y = ax + b\) .

[4]
d.
Answer/Explanation

Markscheme

\(f'(x) = {x^2} + 4x – 5\)     A1A1A1     N3

[3 marks]

a.

evidence of attempting to solve \(f'(x) = 0\)     (M1)

evidence of correct working     A1

e.g. \((x + 5)(x – 1)\) , \(\frac{{ – 4 \pm \sqrt {16 + 20} }}{2}\) , sketch

\(x = – 5\), \(x = 1\)     (A1)

so \(x = – 5\)     A1     N2

[4 marks]

b.

METHOD 1

\(f”(x) = 2x + 4\) (may be seen later)     A1

evidence of setting second derivative = 0     (M1)

e.g. \(2x + 4 = 0\)

\(x = – 2\)     A1     N2

METHOD 2

evidence of use of symmetry     (M1)

e.g. midpoint of max/min, reference to shape of cubic

correct calculation     A1

e.g. \(\frac{{ – 5 + 1}}{2}\)

\(x = – 2\)     A1     N2

[3 marks]

c.

attempting to find the value of the derivative when \(x = 3\)     (M1)

\(f'(3) = 16\)     A1

valid approach to finding the equation of a line     M1

e.g. \(y – 12 = 16(x – 3)\) , \(12 = 16 \times 3 + b\)

\(y = 16x – 36\)     A1     N2

[4 marks]

d.

Question

The diagram shows part of the graph of \(y = f'(x)\) . The x-intercepts are at points A and C. There is a minimum at B, and a maximum at D.


(i)     Write down the value of \(f'(x)\) at C.

(ii)    Hence, show that C corresponds to a minimum on the graph of f , i.e. it has the same x-coordinate.

 

[3]
a(i) and (ii).

Which of the points A, B, D corresponds to a maximum on the graph of f ?

[1]
b.

Show that B corresponds to a point of inflexion on the graph of f .

[3]
c.
Answer/Explanation

Markscheme

(i) \(f'(x) = 0\)     A1     N1

(ii) METHOD 1

 \(f'(x) < 0\) to the left of C, \(f'(x) > 0\) to the right of C     R1R1     N2

METHOD 2

\(f”(x) > 0\)     R2     N2

[3 marks]

a(i) and (ii).

A     A1     N1

[1 mark]

b.

METHOD 1

\(f”(x) = 0\)     R2

discussion of sign change of \(f”(x)\)     R1

e.g. \(f”(x) < 0\) to the left of B and \(f”(x) > 0\) to the right of B; \(f”(x)\) changes sign either side of B

B is a point of inflexion     AG     N0

METHOD 2

B is a minimum on the graph of the derivative \({f’}\)     R2

discussion of sign change of \(f”(x)\)     R1

e.g. \(f”(x) < 0\) to the left of B and \(f”(x) > 0\) to the right of B; \(f”(x)\) changes sign either side of B

B is a point of inflexion     AG     N0

[3 marks]

c.

Question

The diagram shows part of the graph of \(y = f'(x)\) . The x-intercepts are at points A and C. There is a minimum at B, and a maximum at D.


(i)     Write down the value of \(f'(x)\) at C.

(ii)    Hence, show that C corresponds to a minimum on the graph of f , i.e. it has the same x-coordinate.

 

[3]
a(i) and (ii).

Which of the points A, B, D corresponds to a maximum on the graph of f ?

[1]
b.

Show that B corresponds to a point of inflexion on the graph of f .

[3]
c.
Answer/Explanation

Markscheme

(i) \(f'(x) = 0\)     A1     N1

(ii) METHOD 1

 \(f'(x) < 0\) to the left of C, \(f'(x) > 0\) to the right of C     R1R1     N2

METHOD 2

\(f”(x) > 0\)     R2     N2

[3 marks]

a(i) and (ii).

A     A1     N1

[1 mark]

b.

METHOD 1

\(f”(x) = 0\)     R2

discussion of sign change of \(f”(x)\)     R1

e.g. \(f”(x) < 0\) to the left of B and \(f”(x) > 0\) to the right of B; \(f”(x)\) changes sign either side of B

B is a point of inflexion     AG     N0

METHOD 2

B is a minimum on the graph of the derivative \({f’}\)     R2

discussion of sign change of \(f”(x)\)     R1

e.g. \(f”(x) < 0\) to the left of B and \(f”(x) > 0\) to the right of B; \(f”(x)\) changes sign either side of B

B is a point of inflexion     AG     N0

[3 marks]

c.
Scroll to Top