Home / IB Math Analysis & Approaches Questionbank-Topic: SL 3.6 The Pythagorean identity and Relationship between trigonometric ratios SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 3.6 The Pythagorean identity and Relationship between trigonometric ratios SL Paper 1

Question

Let \(f(x) = {(\sin x + \cos x)^2}\) .

Show that \(f(x)\) can be expressed as \(1 + \sin 2x\) .[2]

a.

The graph of f is shown below for \(0 \le x \le 2\pi \) .


Let \(g(x) = 1 + \cos x\) . On the same set of axes, sketch the graph of g for \(0 \le x \le 2\pi \) .[2]

b.

The graph of g can be obtained from the graph of f under a horizontal stretch of scale factor p followed by a translation by the vector \(\left( {\begin{array}{*{20}{c}}
k\\
0
\end{array}} \right)\) .

Write down the value of p and a possible value of k .[2]

c.
Answer/Explanation

Markscheme

attempt to expand     (M1)

e.g. \((\sin x + \cos x)(\sin x + \cos x)\) ; at least 3 terms

correct expansion     A1

e.g. \({\sin ^2}x + 2\sin x\cos x + {\cos ^2}x\)

\(f(x) = 1 + \sin 2x\)     AG     N0

[2 marks]

a.


     A1A1     N2

Note: Award A1 for correct sinusoidal shape with period \(2\pi \) and range \([0{\text{, }}2]\), A1 for minimum in circle.

b.

\(p = 2\) , \(k = – \frac{\pi }{2}\)     A1A1     N2

[2 marks]

c.

Question

Let  \(f(x) = {\sin ^3}x + {\cos ^3}x\tan x,\frac{\pi }{2} < x < \pi \) .

Show that \(f(x) = \sin x\) .[2]

a.

Let \(\sin x = \frac{2}{3}\) . Show that \(f(2x) = – \frac{{4\sqrt 5 }}{9}\) .[5]

b.
Answer/Explanation

Markscheme

changing \(\tan x\) into \(\frac{{\sin x}}{{\cos x}}\)     A1

e.g. \({\sin ^3}x + {\cos ^3}x\frac{{\sin x}}{{\cos x}}\)

simplifying     A1

e.g \(\sin x({\sin ^2}x + {\cos ^2}x)\) , \({\sin ^3}x + \sin x – {\sin ^3}x\)

\(f(x) = \sin x\)    AG     N0

[2 marks]

a.

recognizing \(f(2x) = \sin 2x\) , seen anywhere     (A1)

evidence of using double angle identity \(\sin (2x) = 2\sin x\cos x\) , seen anywhere     (M1)

evidence of using Pythagoras with \(\sin x = \frac{2}{3}\)     M1

e.g. sketch of right triangle, \({\sin ^2}x + {\cos ^2}x = 1\)

\(\cos x = – \frac{{\sqrt 5 }}{3}\) (accept \(\frac{{\sqrt 5 }}{3}\) )     (A1)

\(f(2x) = 2\left( {\frac{2}{3}} \right)\left( { – \frac{{\sqrt 5 }}{3}} \right)\)     A1

\(f(2x) = – \frac{{4\sqrt 5 }}{9}\)     AG     N0

[5 marks]

b.

Question

The following diagram shows a right-angled triangle, \(\rm{ABC}\), where \(\sin \rm{A} = \frac{5}{{13}}\).

Show that \(\cos A = \frac{{12}}{{13}}\).[2]

a.

Find \(\cos 2A\).[3]

b.
Answer/Explanation

Markscheme

METHOD 1

approach involving Pythagoras’ theorem     (M1)

eg     \({5^2} + {x^2} = {13^2}\), labelling correct sides on triangle

finding third side is 12 (may be seen on diagram)     A1

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

METHOD 2

approach involving \({\sin ^2}\theta  + {\cos ^2}\theta  = 1\)     (M1)

eg     \({\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\theta  = 1,{\text{ }}{x^2} + \frac{{25}}{{169}} = 1\)

correct working     A1

eg     \({\cos ^2}\theta  = \frac{{144}}{{169}}\)

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

[2 marks]

a.

correct substitution into \(\cos 2\theta \)     (A1)

eg     \(1 – 2{\left( {\frac{5}{{13}}} \right)^2},{\text{ }}2{\left( {\frac{{12}}{{13}}} \right)^2} – 1,{\text{ }}{\left( {\frac{{12}}{{13}}} \right)^2} – {\left( {\frac{5}{{13}}} \right)^2}\)

correct working     (A1)

eg     \(1 – \frac{{50}}{{169}},{\text{ }}\frac{{288}}{{169}} – 1,{\text{ }}\frac{{144}}{{169}} – \frac{{25}}{{169}}\)

\(\cos 2A = \frac{{119}}{{169}}\)     A1     N2

[3 marks]

b.
Scroll to Top