Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.2 Inverse function SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.2 Inverse function SL Paper 1

Question

The function f is defined by f(x) = \(\frac{7x + 7}{2x – 4}\) for \(x\epsilon \mathbb{R}\), x ≠ 2.

(a) Find the zero of f(x).

(b) For the graph of y = f(x), write down the equation of
(i) the vertical asymptote;
(ii) the horizontal asymptote.

(c) Find \(f^{-1}\) (x), the inverse function of f(x).

Answer/Explanation

Answer:

(a) recognizing f(x) = 0
x = -1

(b) (i) x = 2 (must be an equation with x)
(ii) y = \(\frac{7}{2}\) (must be an equation with y)

(c) EITHER
interchanging x and y
2xy – 4x = 7y + 7
correct working with y terms on the same side: 2xy – 7y = 4x + 7

OR
2yx – 4y = 7x +7
correct working with x terms on the same side: 2yx – 7x = 4x + 7 
interchanging x and y OR making x the subject x = \(\frac{4y + 7}{2y – 7}\)

THEN
\(f^{-1}\)(x) = \(\frac{4x + 7}{2x – 7}\) (or equivalent) (\(x ≠ \frac{7}{2}\))

Question

The diagram below shows the graph of a function \(f\) , for \( – 1 \le x \le 2\) .


Write down the value of \(f(2)\).[1]

a.i.

Write down the value of \({f^{ – 1}}( – 1)\) .[2]

a.ii.

Sketch the graph of \({f^{ – 1}}\) on the grid below.


[3]

b.
Answer/Explanation

Markscheme

\(f(2) = 3\)     A1     N1

[1 mark]

a.i.

\({f^{ – 1}}( – 1) = 0\)     A2     N2

[2 marks]

a.ii.

EITHER

attempt to draw \(y = x\) on grid     (M1)

OR

attempt to reverse x and y coordinates     (M1)

eg   writing or plotting at least two of the points

\(( – 2, – 1)\) , \(( – 1,0)\) , \((0,1)\) , \((3,2)\)

THEN

correct graph     A2     N3


[3 marks]

b.

Question

The following diagram shows the graph of \(y = f(x)\), for \( – 4 \le x \le 5\).

Write down the value of \(f( – 3)\).[1]

a(i).

Write down the value of  \({f^{ – 1}}(1)\).[1]

a(ii).

Find the domain of \({f^{ – 1}}\).[2]

b.

On the grid above, sketch the graph of \({f^{ – 1}}\).[3]

c.
Answer/Explanation

Markscheme

\(f( – 3) =  – 1\)     A1     N1

[1 mark]

a(i).

\({f^{ – 1}}(1) = 0\)   (accept \(y = 0\))     A1     N1

[1 mark]

a(ii).

domain of \({f^{ – 1}}\) is range of \(f\)     (R1)

eg     \({\text{R}}f = {\text{D}}{f^{ – 1}}\)

correct answer     A1     N2

eg     \( – 3 \leqslant x \leqslant 3,{\text{ }}x \in [ – 3,{\text{ }}3]{\text{   (accept }} – 3 < x < 3,{\text{ }} – 3 \leqslant y \leqslant 3)\)

[2 marks]

b.


     A1A1     N2

Note: Graph must be approximately correct reflection in \(y = x\).

     Only if the shape is approximately correct, award the following:

     A1 for x-intercept at \(1\), and A1 for endpoints within circles.

[2 marks]

c.
Scroll to Top