Home / IB Math AA Question bank-Topic: SL 5.11 Definite integrals, including analytical approach SL Paper 1

IB Math AA Question bank-Topic: SL 5.11 Definite integrals, including analytical approach SL Paper 1

Question

(a) The expression \(\frac{3\sqrt{x}-5}{\sqrt{x}}\) can be written as \(3-5x^p\) . Write down the value of p . [1]
(b) Hence, find the value of  \(\int_{1}^{9}\frac{3\sqrt{x}-5}{\sqrt{x}}dx\)

Answer/Explanation

Ans

Question

Let f (x) =  \(\sqrt{12-2x}\) , x ≤ a . The following diagram shows part of the graph of f .

The shaded region is enclosed by the graph of f , the x-axis and the y-axis.

                          x

The graph of f intersects the x-axis at the point (a , 0) .

  1. Find the value of a . [2]

  2. Find the volume of the solid formed when the shaded region is revolved 360° about the x-axis. [5]

Answer/Explanation

Ans:

(a)

recognize f (x) = 0 

eg \(\sqrt{12-2x}= 0, 2x=12\)

a= 6 (accept x= 6, (6,0))

(b)

attempt to substitute either their limits or the function into volume formula (must involve \(f^{2})\)

eg \(\int_{0}^{6}f^{2}dx , \pi \int (\sqrt{12-2x})^{2}, \pi \int_{0}^{6}\)(12-2x) dx

correct integaration of each term

eg \(12x-x^{2}, 12x-x^{2}\)+c, \(\left [ 12x-x^{2} \right ]_0^6\)

substituting limits into their integrated function and subtracting (in any order)

eg \(\pi (12(6)-(6)^{2})-\pi (0),72\pi -36\pi ,(12(6)-(6)^{2})-(0)\)

volume = \(36\pi \)

Question

Find  \(\int {\frac{1}{{2x + 3}}} {\rm{d}}x\) .[2]

a.

Given that \(\int_0^3 {\frac{1}{{2x + 3}}} {\rm{d}}x = \ln \sqrt P \) , find the value of P.[4]

b.
Answer/Explanation

Markscheme

\(\int {\frac{1}{{2x + 3}}} {\rm{d}}x = \frac{1}{2}\ln (2x + 3) + C\)  (accept \(\frac{1}{2}\ln |(2x + 3)| + C\) )    A1A1     N2

[2 marks]

a.

\(\int_0^3 {\frac{1}{{2x + 3}}} {\rm{d}}x = \left[ {\frac{1}{2}\ln (2x + 3)} \right]_0^3\)

evidence of substitution of limits     (M1)

e.g.\(\frac{1}{2}\ln 9 – \frac{1}{2}\ln 3\)

evidence of correctly using \(\ln a – \ln b = \ln \frac{a}{b}\) (seen anywhere)     (A1)

e.g. \(\frac{1}{2}\ln 3\)

evidence of correctly using \(a\ln b = \ln {b^a}\) (seen anywhere)     (A1)

e.g. \(\ln \sqrt {\frac{9}{3}} \)

\(P = 3\) (accept \(\ln \sqrt 3 \) )     A1     N2

[4 marks]

b.

Question

Find \(\int_4^{10} {(x – 4){\rm{d}}x} \) .

[4]
a.

Part of the graph of \(f(x) = \sqrt {{x^{}} – 4} \) , for \(x \ge 4\) , is shown below. The shaded region R is enclosed by the graph of \(f\) , the line \(x = 10\) , and the x-axis.

The region R is rotated \({360^ \circ }\) about the x-axis. Find the volume of the solid formed.

[3]
b.
Answer/Explanation

Markscheme

correct integration     A1A1

e.g. \(\frac{{{x^2}}}{2} – 4x\), \(\left[ {\frac{{{x^2}}}{2} – 4x} \right]_4^{10}\), \(\frac{{{{(x – 4)}^2}}}{2}\)

Notes: In the first 2 examples, award A1 for each correct term.

In the third example, award A1 for \(\frac{1}{2}\) and A1 for \({(x – 4)^2}\).

substituting limits into their integrated function and subtracting (in any order)     (M1)

e.g. \(\left( {\frac{{{{10}^2}}}{2} – 4(10)} \right) – \left( {\frac{{{4^2}}}{2} – 4(4)} \right),10 – ( – 8),\frac{1}{2}({6^2} – 0)\)

\(\int_4^{10} {(x – 4){\rm{d}}x = 18} \)     A1     N2

a.

attempt to substitute either limits or the function into volume formula     (M1)

e.g. \(\pi \int_4^{10} {{f^2}} {\rm{d}}x{\text{, }}{\int_a^b {(\sqrt {x – 4} )} ^2}{\text{, }}\pi \int_4^{10} {\sqrt {x – 4} } \)

Note: Do not penalise for missing \(\pi \) or dx.

correct substitution (accept absence of dx and \(\pi \))     (A1)

e.g. \(\pi {\int_4^{10} {(\sqrt {x – 4} )} ^2}{\text{, }}\pi \int_4^{10} {(x – 4){\rm{d}}x} {\text{, }}\int_4^{10} {(x – 4){\rm{d}}x} \)

volume = \(18\pi \)     A1     N2

[3 marks]

b.

Question

The diagram shows part of the curve y = sin x. The shaded region is bounded by the curve and the lines y = 0 and \(x = \frac{3\pi}{4}\).

Given that sin \(\frac{3\pi}{4}=\frac{\sqrt{2}}{2}\) and cos \(\frac{3\pi}{4}=-\frac{\sqrt{2}}{2}\), calculate the exact area of the shaded region.

Answer/Explanation

Ans

Scroll to Top