Home / IB Math Analysis & Approaches Questionbank-Topic: SL 1.7 Laws of logarithms- SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 1.7 Laws of logarithms- SL Paper 1

Question

a.Find \({\log _2}32\) .[1]

 

b.Given that \({\log _2}\left( {\frac{{{{32}^x}}}{{{8^y}}}} \right)\) can be written as \(px + qy\) , find the value of p and of q.[4]

 
Answer/Explanation

Markscheme

5     A1     N1

[1 mark]

a.

METHOD 1

\({\log _2}\left( {\frac{{{{32}^x}}}{{{8^y}}}} \right) = {\log _2}{32^x} – {\log _2}{8^y}\)     (A1)

\( = x{\log _2}32 – y{\log _2}8\)     (A1)

\({\log _2}8 = 3\)     (A1)

\(p = 5\) , \(q = – 3\) (accept \(5x – 3y\) )     A1      N3 

METHOD 2

\(\frac{{{{32}^x}}}{{{8^y}}} = \frac{{{{({2^5})}^x}}}{{{{({2^3})}^y}}}\)     (A1) 

\( = \frac{{{2^5}^x}}{{{2^3}^y}}\)     (A1)

\( = {2^{5x – 3y}}\)     (A1)

\({\log _2}({2^{5x – 3y}}) = 5x – 3y\)

\(p = 5\) , \(q = – 3\) (accept \(5x – 3y\) )     A1      N3

[4 marks]

b.

Question

Let \(f(x) = k{\log _2}x\) .

a.Given that \({f^{ – 1}}(1) = 8\) , find the value of \(k\) .[3]

 

b.Find \({f^{ – 1}}\left( {\frac{2}{3}} \right)\) .[4]

 
Answer/Explanation

Markscheme

METHOD 1

recognizing that \(f(8) = 1\)     (M1)

e.g. \(1 = k{\log _2}8\)

recognizing that \({\log _2}8 = 3\)     (A1)

e.g. \(1 = 3k\)

\(k = \frac{1}{3}\)     A1     N2

METHOD 2

attempt to find the inverse of \(f(x) = k{\log _2}x\)     (M1)

e.g. \(x = k{\log _2}y\) , \(y = {2^{\frac{x}{k}}}\)

substituting 1 and 8     (M1)

e.g. \(1 = k{\log _2}8\) , \({2^{\frac{1}{k}}} = 8\)

\(k = \frac{1}{{{{\log }_2}8}}\) \(\left( {k = \frac{1}{3}} \right)\)     A1     N2

[3 marks]

a.

METHOD 1

recognizing that \(f(x) = \frac{2}{3}\)     (M1)

e.g. \(\frac{2}{3} = \frac{1}{3}{\log _2}x\)

\({\log _2}x = 2\)     (A1)

\({f^{ – 1}}\left( {\frac{2}{3}} \right) = 4\) (accept \(x = 4\))     A2     N3

METHOD 2

attempt to find inverse of \(f(x) = \frac{1}{3}{\log _2}x\)     (M1)

e.g. interchanging x and y , substituting \(k = \frac{1}{3}\) into \(y = {2^{\frac{x}{k}}}\)

correct inverse     (A1)

e.g. \({f^{ – 1}}(x) = {2^{3x}}\) , \({2^{3x}}\)

\({f^{ – 1}}\left( {\frac{2}{3}} \right) = 4\)     A2    N3

[4 marks]

b.

Question

Let \(f(x) = 3\ln x\) and \(g(x) = \ln 5{x^3}\) .

a. Express \(g(x)\) in the form \(f(x) + \ln a\) , where \(a \in {{\mathbb{Z}}^ + }\) .[4]

 

b.The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.[3]

 
Answer/Explanation

Markscheme

attempt to apply rules of logarithms     (M1)

e.g. \(\ln {a^b} = b\ln a\) , \(\ln ab = \ln a + \ln b\)

correct application of \(\ln {a^b} = b\ln a\) (seen anywhere)     A1

e.g. \(3\ln x = \ln {x^3}\)

correct application of \(\ln ab = \ln a + \ln b\) (seen anywhere)     A1

e.g. \(\ln 5{x^3} = \ln 5 + \ln {x^3}\)

so \(\ln 5{x^3} = \ln 5 + 3\ln x\)

\(g(x) = f(x) + \ln 5\) (accept \(g(x) = 3\ln x + \ln 5\) )     A1     N1

[4 marks]

a.

transformation with correct name, direction, and value     A3

e.g. translation by \(\left( {\begin{array}{*{20}{c}}
0\\
{\ln 5}
\end{array}} \right)\) , shift up by \(\ln 5\) , vertical translation of \(\ln 5\)

[3 marks]

b.

Question

Let \({\log _3}p = 6\) and \({\log _3}q = 7\) .

a.Find \({\log _3}{p^2}\) .[2]

b. Find \({\log _3}\left( {\frac{p}{q}} \right)\) .[2]

c.Find \({\log _3}(9p)\) .[3]

Answer/Explanation

METHOD 1

evidence of correct formula     (M1)

eg   \(\log {u^n} = n\log u\) , \(2{\log _3}p\)

\({\log _3}({p^2}) = 12\)     A1     N2

METHOD 2

valid method using \(p = {3^6}\)     (M1)

eg \({\log _3}{({3^6})^2}\) , \(\log {3^{12}}\) , \(12{\log _3}3\)

\({\log _3}({p^2}) = 12\)     A1     N2

[2 marks]

a.

METHOD 1

evidence of correct formula     (M1)

eg   \(\log \left( {\frac{p}{q}} \right) = \log p – \log q\) , \(6 – 7\)

\({\log _3}\left( {\frac{p}{q}} \right) =  – 1\)     A1     N2

METHOD 2

valid method using \(p = {3^6}\) and \(q = {3^7}\)     (M1)

eg   \({\log _3}\left( {\frac{{{3^6}}}{{{3^7}}}} \right)\) , \(\log {3^{ – 1}}\) , \( – {\log _3}3\)

\({\log _3}\left( {\frac{p}{q}} \right) =  – 1\)     A1     N2

[2 marks]

b.

METHOD 1

evidence of correct formula     (M1)

eg   \({\log _3}uv = {\log _3}u + {\log _3}v\) , \(\log 9 + \log p\)

\({\log _3}9 = 2\) (may be seen in expression)     A1

eg   \(2 + \log p\)

\({\log _3}(9p) = 8\)     A1     N2

METHOD 2

valid method using \(p = {3^6}\)     (M1)

eg   \({\log _3}(9 \times {3^6})\) , \({\log _3}({3^2} \times {3^6})\)

correct working     A1

eg   \({\log _3}9 + {\log _3}{3^6}\) , \({\log _3}{3^8}\)

\({\log _3}(9p) = 8\)     A1     N2

[3 marks]

Total [7 marks]

c.

Question

Solve the equations
(a) \(log_2(x+14)-2log_2x=2\)
(b) \(log_4(x+14)-log_2x=1\)         by using change of base on \(log_4(x+14)\)
(c) \(log_2(x+14)=2+log_{\sqrt{2}}x\)      by using change of base on \(log_{\sqrt{2}}x\)

Answer/Explanation

Ans
(a) x = 2     (b) x = 2     (c) x = 2    ( it is the same equation in all 3 cases )

Scroll to Top