IB Math Analysis & Approaches Question bank-Topic: SL 5.7 The second derivative SL Paper 1

Question

A function f has its first derivative given by \(f'(x) = {(x – 3)^3}\) .

Find the second derivative.

[2]
a.

Find \(f'(3)\) and \(f”(3)\) .

[1]
b.

The point P on the graph of f has x-coordinate \(3\). Explain why P is not a point of inflexion.

[2]
c.
Answer/Explanation

Markscheme

METHOD 1

\(f”(x) = 3{(x – 3)^2}\)     A2     N2

METHOD 2

attempt to expand \({(x – 3)^3}\)     (M1)

e.g. \(f'(x) = {x^3} – 9{x^2} + 27x – 27\)

\(f”(x) = 3{x^2} – 18x + 27\)     A1     N2

[2 marks]

a.

\(f'(3) = 0\) , \(f”(3) = 0\)     A1     N1

[1 mark]

b.

METHOD 1

\({f”}\) does not change sign at P     R1

evidence for this     R1     N0

METHOD 2

\({f’}\) changes sign at P so P is a maximum/minimum (i.e. not inflexion)     R1

evidence for this     R1     N0

METHOD 3

finding \(f(x) = \frac{1}{4}{(x – 3)^4} + c\) and sketching this function     R1

indicating minimum at \(x = 3\)     R1     N0 

[2 marks]

c.

Question

Let \(f(x) = \frac{{\cos x}}{{\sin x}}\) , for \(\sin x \ne 0\) .

In the following table, \(f’\left( {\frac{\pi }{2}} \right) = p\) and \(f”\left( {\frac{\pi }{2}} \right) = q\) . The table also gives approximate values of \(f'(x)\) and \(f”(x)\) near \(x = \frac{\pi }{2}\) .


Use the quotient rule to show that \(f'(x) = \frac{{ – 1}}{{{{\sin }^2}x}}\) .

[5]
a.

Find \(f”(x)\) .

[3]
b.

Find the value of p and of q.

[3]
c.

Use information from the table to explain why there is a point of inflexion on the graph of f where \(x = \frac{\pi }{2}\) .

[2]
d.
Answer/Explanation

Markscheme

\(\frac{{\rm{d}}}{{{\rm{d}}x}}\sin x = \cos x\) , \(\frac{{\rm{d}}}{{{\rm{d}}x}}\cos x = – \sin x\) (seen anywhere)     (A1)(A1)

evidence of using the quotient rule     M1

correct substitution     A1

e.g. \(\frac{{\sin x( – \sin x) – \cos x(\cos x)}}{{{{\sin }^2}x}}\) , \(\frac{{ – {{\sin }^2}x – {{\cos }^2}x}}{{{{\sin }^2}x}}\)

\(f'(x) = \frac{{ – ({{\sin }^2}x + {{\cos }^2}x)}}{{{{\sin }^2}x}}\)     A1

\(f'(x) = \frac{{ – 1}}{{{{\sin }^2}x}}\)     AG      N0

[5 marks]

a.

METHOD 1

appropriate approach     (M1)

e.g. \(f'(x) = – {(\sin x)^{ – 2}}\)

\(f”(x) = 2({\sin ^{ – 3}}x)(\cos x)\) \(\left( { = \frac{{2\cos x}}{{{{\sin }^3}x}}} \right)\)     A1A1     N3

Note: Award A1 for \(2{\sin ^{ – 3}}x\) , A1 for \(\cos x\) .

METHOD 2

derivative of \({\sin ^2}x = 2\sin x\cos x\) (seen anywhere)     A1

evidence of choosing quotient rule     (M1)

e.g. \(u = – 1\) ,  \(v = {\sin ^2}x\) , \(f” = \frac{{{{\sin }^2}x \times 0 – ( – 1)2\sin x\cos x}}{{{{({{\sin }^2}x)}^2}}}\)

\(f”(x) = \frac{{2\sin x\cos x}}{{{{({{\sin }^2}x)}^2}}}\) \(\left( { = \frac{{2\cos x}}{{{{\sin }^3}x}}} \right)\)     A1     N3

[3 marks]

b.

evidence of substituting \(\frac{\pi }{2}\)     M1

e.g. \(\frac{{ – 1}}{{{{\sin }^2}\frac{\pi }{2}}}\) , \(\frac{{2\cos \frac{\pi }{2}}}{{{{\sin }^3}\frac{\pi }{2}}}\)

\(p = – 1\) ,  \(q = 0\)    A1A1     N1N1

[3 marks]

c.

second derivative is zero, second derivative changes sign     R1R1     N2

[2 marks]

d.

Question

A function f (x) has derivative f ′(x) = 3x2 + 18x. The graph of f has an x-intercept at x = −1.

Find f (x).

[6]
a.

The graph of f has a point of inflexion at x = p. Find p.

[4]
b.

Find the values of x for which the graph of f is concave-down.

[3]
c.
Answer/Explanation

Markscheme

evidence of integration       (M1)

eg  \(\int {f’\left( x \right)} \)

correct integration (accept absence of C)       (A1)(A1)

eg  \({x^3} + \frac{{18}}{2}{x^2} + C,\,\,{x^3} + 9{x^2}\)

attempt to substitute x = −1 into their = 0 (must have C)      M1

eg  \({\left( { – 1} \right)^3} + 9{\left( { – 1} \right)^2} + C = 0,\,\, – 1 + 9 + C = 0\)

Note: Award M0 if they substitute into original or differentiated function.

correct working       (A1)

eg  \(8 + C = 0,\,\,\,C =  – 8\)

\(f\left( x \right) = {x^3} + 9{x^2} – 8\)      A1 N5

[6 marks]

a.

METHOD 1 (using 2nd derivative)

recognizing that f” = 0 (seen anywhere)      M1

correct expression for f”      (A1)

eg   6x + 18, 6p + 18

correct working      (A1)

6+ 18 = 0

p = −3       A1 N3

METHOD 1 (using 1st derivative)

recognizing the vertex of f′ is needed       (M2)

eg   \( – \frac{b}{{2a}}\) (must be clear this is for f′)

correct substitution      (A1)

eg   \(\frac{{ – 18}}{{2 \times 3}}\)

p = −3       A1 N3

[4 marks]

b.

valid attempt to use f” (x) to determine concavity      (M1)

eg   f” (x) < 0, f” (−2), f” (−4),  6x + 18 ≤ 0 

correct working       (A1)

eg   6x + 18 < 0, f” (−2) = 6, f” (−4) = −6 

f concave down for x < −3 (do not accept ≤ −3)       A1 N2

[3 marks]

c.
Scroll to Top