Home / IB Math Analysis & Approaches Question bank-Topic SL 5.1 Introduction to the concept of a limit SL Paper 1

IB Math Analysis & Approaches Question bank-Topic SL 5.1 Introduction to the concept of a limit SL Paper 1

Question

Let \(f(x) = 1 + {{\text{e}}^{ – x}}\) and \(g(x) = 2x + b\), for \(x \in \mathbb{R}\), where \(b\) is a constant.

Find \((g \circ f)(x)\). [2]

a.

Given that \(\mathop {\lim }\limits_{x \to  + \infty } (g \circ f)(x) =  – 3\), find the value of \(b\). [4]

b.
Answer/Explanation

Markscheme

attempt to form composite     (M1)

eg\(\,\,\,\,\,\)\(g(1 + {{\text{e}}^{ – x}})\)

correct function     A1     N2

eg\(\,\,\,\,\,\)\((g \circ f)(x) = 2 + b + 2{{\text{e}}^{ – x}},{\text{ }}2(1 + {{\text{e}}^{ – x}}) + b\)

[2 marks]

a.

evidence of \(\mathop {\lim }\limits_{x \to \infty } (2 + b + 2{{\text{e}}^{ – x}}) = 2 + b + \mathop {\lim }\limits_{x \to \infty } (2{{\text{e}}^{ – x}})\)     (M1)

eg\(\,\,\,\,\,\)\(2 + b + 2{{\text{e}}^{ – \infty }}\), graph with horizontal asymptote when \(x \to \infty \)

Note:     Award M0 if candidate clearly has incorrect limit, such as \(x \to 0,{\text{ }}{{\text{e}}^\infty },{\text{ }}2{{\text{e}}^0}\).

evidence that \({{\text{e}}^{ – x}} \to 0\) (seen anywhere)     (A1)

eg\(\,\,\,\,\,\)\(\mathop {\lim }\limits_{x \to \infty } ({{\text{e}}^{ – x}}) = 0,{\text{ }}1 + {{\text{e}}^{ – x}} \to 1,{\text{ }}2(1) + b =  – 3,{\text{ }}{{\text{e}}^{{\text{large negative number}}}} \to 0\), graph of \(y = {{\text{e}}^{ – x}}\) or

\(y = 2{{\text{e}}^{ – x}}\) with asymptote \(y = 0\), graph of composite function with asymptote \(y =  – 3\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(2 + b =  – 3\)

\(b =  – 5\)     A1     N2

[4 marks]

b.

Question

The graph of the function \(f\) is shown below

  1. Write down the domain and the range of the function.
    Domain of \(f\) :Range of \(f \):
  2. Complete the following table of values
    \(f (-1)=\)\(f (1)=\)\(f (4)=\)\(f (6)=\)\(f (8)=\)
  3. Complete the following table of limits (if there exist)
    \(\lim_{x\rightarrow 1^{-}}f(x)=\)\(\lim_{x\rightarrow 1^{+}}f(x)=\)\(\lim_{x\rightarrow 1}f(x)=\)
    \(\lim_{x\rightarrow 4^{-}}f(x)=\)\(\lim_{x\rightarrow 4^{+}}f(x)=\)\(\lim_{x\rightarrow 4}f(x)=\)
    \(\lim_{x\rightarrow 6^{-}}f(x)=\)\(\lim_{x\rightarrow 6^{+}}f(x)=\)\(\lim_{x\rightarrow 6}f(x)=\)
  4. Determine whether the functions is continuous at \(x = 4 , x =1, x= 6\) .
    Is \(f\) continuous at \(x = 4\)YES, since \(\lim_{x\rightarrow 4}f(x)=2\) and \(f(4)=2\)
    Is \(f\) continuous at \(x = 1\) 
    Is \(f\) continuous at \(x = 6\) 
Answer/Explanation

Ans:

  1. Domain of \(f\) : \(x \in [-1,8]\)

    Range of \(f \): \(y \in [1,4]\)
  2. \(f (-1)=2\)\(f (1)=4\)\(f (4)=2\)\(f (6)=2\)\(f (8)=\) not defined
  3. Complete the following table of limits (if there exist)
    \(\lim_{x\rightarrow 1^{-}}f(x)=2\)\(\lim_{x\rightarrow 1^{+}}f(x)=2\)\(\lim_{x\rightarrow 1}f(x)=2\)
    \(\lim_{x\rightarrow 4^{-}}f(x)=2\)\(\lim_{x\rightarrow 4^{+}}f(x)=2\)\(\lim_{x\rightarrow 4}f(x)=2\)
    \(\lim_{x\rightarrow 6^{-}}f(x)=4\)\(\lim_{x\rightarrow 6^{+}}f(x)=2\)\(\lim_{x\rightarrow 6}f(x)\) does not exist.
  4. Determine whether the functions is continuous at \(x = 4 , x =1, x= 6\) .
    Is \(f\) continuous at \(x = 4\)YES, since \(\lim_{x\rightarrow 4}f(x)=2\) and \(f(4)=2\)
    Is \(f\) continuous at \(x = 1\)NO, since \(\lim_{x\rightarrow 1}f(x)=2\) and \(f(1)=4 \space 2 \ne 4.\)
    Is \(f\) continuous at \(x = 6\)NO, since \(\lim_{x\rightarrow 6}f(x)\) does not exist.

 

Question

  1. Write down the values of the following limits
    \(\lim_{x\to 3} \frac{x+3}{x-2}=\)\(\lim_{x\to +\infty} \frac{x+3}{x-2}=\)\(\lim_{x\to -\infty} \frac{x+3}{x-2}=\)
  2. Investigate whether each of the following side limits is \(+\infty\) or \(-\infty\)
    \(\lim_{x\to 2^{+}} \frac{x+3}{x-2}=\)\(\lim_{x\to 2^{-}} \frac{x+3}{x-2}=\)
    \(\lim_{x\to 2^{+}} \frac{x-3}{x-2}=\)\(\lim_{x\to 2^{-}} \frac{x-3}{x-2}=\)
Answer/Explanation

Ans:

  1. \(\lim_{x\to 3} \frac{x+3}{x-2}=6\)\(\lim_{x\to +\infty} \frac{x+3}{x-2}=1\)\(\lim_{x\to -\infty} \frac{x+3}{x-2}=-1\)
  2. \(\lim_{x\to 2^{+}} \frac{x+3}{x-2}=+\infty\)\(\lim_{x\to 2^{-}} \frac{x+3}{x-2}=-\infty\)
    \(\lim_{x\to 2^{+}} \frac{x-3}{x-2}=-\infty\)\(\lim_{x\to 2^{-}} \frac{x-3}{x-2}=+\infty\)
Scroll to Top