Home / IB Math Analysis & Approaches Questionbank-Topic: SL 3.5 Definition of trigonometric ratios and Exact values SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 3.5 Definition of trigonometric ratios and Exact values SL Paper 1

Question

Let \(p = \sin 40^\circ \) and \(q = \cos 110^\circ \) . Give your answers to the following in terms of p and/or q .

Write down an expression for

(i)     \(\sin 140^\circ \) ;

(ii)    \(\cos 70^\circ \) .[2]

a(i) and (ii).

Find an expression for \(\cos 140^\circ \) .[3]

b.

Find an expression for \(\tan 140^\circ \) .[1]

c.
Answer/Explanation

Markscheme

(i) \(\sin 140^\circ = p\)     A1     N1

(ii) \(\cos 70^\circ = – q\)     A1     N1

[2 marks]

a(i) and (ii).

METHOD 1

evidence of using \({\sin ^2}\theta + {\cos ^2}\theta = 1\)     (M1)

e.g. diagram, \(\sqrt {1 – {p^2}} \) (seen anywhere)

\(\cos 140^\circ = \pm \sqrt {1 – {p^2}} \)     (A1)

\(\cos 140^\circ = – \sqrt {1 – {p^2}} \)     A1     N2

METHOD 2

evidence of using \(\cos 2\theta = 2{\cos ^2}\theta – 1\)     (M1)

\(\cos 140^\circ = 2{\cos ^2}70 – 1\)     (A1)

\(\cos 140^\circ = 2{( – q)^2} – 1\) \(( = 2{q^2} – 1)\)     A1     N2

[3 marks]

b.

METHOD 1

\(\tan 140^\circ = \frac{{\sin 140^\circ }}{{\cos 140^\circ }} = – \frac{p}{{\sqrt {1 – {p^2}} }}\)     A1     N1

METHOD 2

\(\tan 140^\circ = \frac{p}{{2{q^2} – 1}}\)     A1     N1

[1 mark]

c.

Question

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.


The point P(x , y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is \(\theta \) radians, where \(0 \le \theta  \le \frac{\pi }{2}\) .

Write down an expression in terms of \(\theta \) for

(i)     \(x\) ;

(ii)    \(y\) .[2]

a.

Let the area of the rectangle be A.

Show that \(A = 18\sin 2\theta \) .[3]

b.

(i)     Find \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }}\) .

(ii)    Hence, find the exact value of \(\theta \) which maximizes the area of the rectangle.

(iii)   Use the second derivative to justify that this value of \(\theta \) does give a maximum.[8]

c.
Answer/Explanation

Markscheme

(i) \(x = 3\cos \theta \)     A1     N1 

(ii) \(y = 3\sin \theta \)     A1     N1

[2 marks]

a.

finding area     (M1)

e.g. \(A = 2x \times 2y\) , \(A = 8 \times \frac{1}{2}bh\) 

substituting     A1

e.g. \(A = 4 \times 3\sin \theta  \times 3\cos \theta \) , \(8 \times \frac{1}{2} \times 3\cos \theta  \times 3\sin \theta \)

\(A = 18(2\sin \theta \cos \theta )\)    A1

\(A = 18\sin 2\theta \)     AG     N0

[3 marks]

b.

(i) \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 36\cos 2\theta \)     A2     N2 

(ii) for setting derivative equal to 0     (M1)

e.g. \(36\cos 2\theta  = 0\) , \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 0\)

\(2\theta  = \frac{\pi }{2}\)     (A1)

\(\theta  = \frac{\pi }{4}\)     A1     N2

(iii) valid reason (seen anywhere)     R1

e.g. at \(\frac{\pi }{4}\), \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} < 0\) ; maximum when \(f”(x) < 0\)

finding second derivative \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} =  – 72\sin 2\theta \)     A1

evidence of substituting \(\frac{\pi }{4}\)     M1

e.g. \( – 72\sin \left( {2 \times \frac{\pi }{4}} \right)\) , \( – 72\sin \left( {\frac{\pi }{2}} \right)\) , \( – 72\)

\(\theta  = \frac{\pi }{4}\) produces the maximum area     AG     N0

[8 marks]

c.

Question

Let \(p = \sin 40^\circ \) and \(q = \cos 110^\circ \) . Give your answers to the following in terms of p and/or q .

Write down an expression for

(i)     \(\sin 140^\circ \) ;

(ii)    \(\cos 70^\circ \) .[2]

a(i) and (ii).

Find an expression for \(\cos 140^\circ \) .[3]

b.

Find an expression for \(\tan 140^\circ \) .[1]

c.
Answer/Explanation

Markscheme

(i) \(\sin 140^\circ = p\)     A1     N1

(ii) \(\cos 70^\circ = – q\)     A1     N1

[2 marks]

a(i) and (ii).

METHOD 1

evidence of using \({\sin ^2}\theta + {\cos ^2}\theta = 1\)     (M1)

e.g. diagram, \(\sqrt {1 – {p^2}} \) (seen anywhere)

\(\cos 140^\circ = \pm \sqrt {1 – {p^2}} \)     (A1)

\(\cos 140^\circ = – \sqrt {1 – {p^2}} \)     A1     N2

METHOD 2

evidence of using \(\cos 2\theta = 2{\cos ^2}\theta – 1\)     (M1)

\(\cos 140^\circ = 2{\cos ^2}70 – 1\)     (A1)

\(\cos 140^\circ = 2{( – q)^2} – 1\) \(( = 2{q^2} – 1)\)     A1     N2

[3 marks]

b.

METHOD 1

\(\tan 140^\circ = \frac{{\sin 140^\circ }}{{\cos 140^\circ }} = – \frac{p}{{\sqrt {1 – {p^2}} }}\)     A1     N1

METHOD 2

\(\tan 140^\circ = \frac{p}{{2{q^2} – 1}}\)     A1     N1

[1 mark]

c.

Question

The expression \(6\sin x\cos x\) can be expressed in the form \(a\sin bx\) .

Find the value of a and of b .[3]

a.

Hence or otherwise, solve the equation \(6\sin x\cos x = \frac{3}{2}\) , for \(\frac{\pi }{4} \le x \le \frac{\pi }{2}\) .[4]

b.
Answer/Explanation

Markscheme

recognizing double angle     M1

e.g. \(3 \times 2\sin x\cos x\) , \(3\sin 2x\)

\(a = 3\) , \(b = 2\)     A1A1     N3

[3 marks]

a.

substitution \(3\sin 2x = \frac{3}{2}\)     M1

\(\sin 2x = \frac{1}{2}\)     A1

finding the angle     A1

e.g. \(\frac{\pi }{6}\) , \(2x = \frac{{5\pi }}{6}\)

\(x = \frac{{5\pi }}{{12}}\)     A1     N2

Note: Award A0 if other values are included.

[4 marks]

b.

Question

[Maximum mark: 7] [without GDC]
Given that sin x = p , where x is an acute angle
(a) Find the value of cos x in terms of p ; [2]
(b) Hence, express the following in terms of p :
(i) tan x   (ii) cos 2x   (iii) sin 2x   (iv) tan 2x   (v) sin 4x  [5]

Answer/Explanation

Ans:
(a) \(\cos x=\sqrt{1-p^{2}}\)
(b) \(\tan x=\frac{p}{\sqrt{1-p^{2}}}, \quad \cos 2 x=1-2 p^{2}\)
\(\sin 2 x=2 p \sqrt{1-p^{2}}, \quad \tan 2 x=\frac{2 p \sqrt{1-p^{2}}}{1-2 p^{2}}\)
\(\sin 4 x=4 p \sqrt{1-p^{2}}\left(1-2 p^{2}\right)\)

Scroll to Top