Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.6 quadratic function SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.6 quadratic function SL Paper 1

Question

Let \(f\) be a quadratic function. Part of the graph of \(f\) is shown below.

The vertex is at P(\(4\), \(2\)) and the y-intercept is at Q(\(0\), \(6\)) .

Write down the equation of the axis of symmetry.[1]

a.

The function f can be written in the form \(f(x) = a{(x – h)^2} + k\) .

Write down the value of h and of k .[2]

b.

The function f can be written in the form \(f(x) = a{(x – h)^2} + k\) .Find a .

[3]
c.
Answer/Explanation

Markscheme

\(x = 4\) (must be an equation)     A1     N1

[1 mark]

a.

\(h = 4\) , \(k = 2\)     A1A1     N2

[2 marks]

b.

attempt to substitute coordinates of any point on the graph into f     (M1)

e.g. \(f(0) = 6\) , \(6 = a{(0 – 4)^2} + 2\) , \(f(4) = 2\)

correct equation (do not accept an equation that results from \(f(4) = 2\) )     (A1)

e.g. \(6 = a{( – 4)^2} + 2\) , \(6 = 16a + 2\)

\(a = \frac{4}{{16}}\left( { = \frac{1}{4}} \right)\)     A1     N2

[3 marks]

c.

Question

Let \(f(x) = a{(x – h)^2} + k\). The vertex of the graph of \(f\) is at \((2, 3)\) and the graph passes through \((1, 7)\).

Write down the value of \(h\) and of \(k\).

[2]
a.

Find the value of \(a\).

[3]
b.
Answer/Explanation

Markscheme

\(h = 2,{\text{ }}k = 3\)     A1A1     N2

[2 marks]

a.

attempt to substitute \((1,7)\) in any order into their \(f(x)\)     (M1)

eg     \(7 = a{(1 – 2)^2} + 3{\text{, }}7 = a{(1 – 3)^2} + 2{\text{, }}1 = a{(7 – 2)^2} + 3\)

correct equation     (A1)

eg     \(7 = a + 3\)

a = 4     A1     N2

[3 marks]

b.

Question

Let \(f(x) = 3{x^2} – 6x + p\). The equation \(f(x) = 0\) has two equal roots.

Write down the value of the discriminant.[2]

a(i).

Hence, show that \(p = 3\).[1]

a(ii).

The graph of \(f\)has its vertex on the \(x\)-axis.

Find the coordinates of the vertex of the graph of \(f\).[4]

b.

The graph of \(f\) has its vertex on the \(x\)-axis.

Write down the solution of \(f(x) = 0\).[1]

c.

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(a\).[1]

d(i).

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(h\).[1]

d(ii).

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(k\).[1]

d(iii).

The graph of \(f\) has its vertex on the \(x\)-axis.

The graph of a function \(g\) is obtained from the graph of \(f\) by a reflection of \(f\) in the \(x\)-axis, followed by a translation by the vector \(\left( \begin{array}{c}0\\6\end{array} \right)\). Find \(g\), giving your answer in the form \(g(x) = A{x^2} + Bx + C\).[4]

e.
Answer/Explanation

Markscheme

correct value \(0\), or \(36 – 12p\)     A2     N2

[2 marks]

a(i).

correct equation which clearly leads to \(p = 3\)     A1

eg     \(36 – 12p = 0,{\text{ }}36 = 12p\)

\(p = 3\)     AG     N0

[1 mark]

a(ii).

METHOD 1

valid approach     (M1)

eg     \(x =  – \frac{b}{{2a}}\)

correct working     A1

eg     \( – \frac{{( – 6)}}{{2(3)}},{\text{ }}x = \frac{6}{6}\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

METHOD 2

valid approach     (M1)

eg     \(f(x) = 0\), factorisation, completing the square

correct working     A1

eg     \({x^2} – 2x + 1 = 0,{\text{ }}(3x – 3)(x – 1),{\text{ }}f(x) = 3{(x – 1)^2}\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

METHOD 3

valid approach using derivative     (M1)

eg     \(f'(x) = 0,{\text{ }}6x – 6\)

correct equation     A1

eg     \(6x – 6 = 0\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

[4 marks]

b.

\(x = 1\)     A1     N1

[1 mark]

c.

\(a = 3\)     A1     N1

[1 mark]

d(i).

\(h = 1\)     A1     N1

[1 mark]

d(ii).

\(k = 0\)     A1     N1

[1 mark]

d(iii).

attempt to apply vertical reflection     (M1)

eg     \( – f(x),{\text{ }} – 3{(x – 1)^2}\), sketch

attempt to apply vertical shift 6 units up     (M1)

eg     \( – f(x) + 6\), vertex \((1, 6)\)

transformations performed correctly (in correct order)     (A1)

eg     \( – 3{(x – 1)^2} + 6,{\text{ }} – 3{x^2} + 6x – 3 + 6\)

\(g(x) =  – 3{x^2} + 6x + 3\)     A1     N3

[4 marks]

e.

Question

Let f(x) = ax2 − 4xc. A horizontal line, L , intersects the graph of f at x = −1 and x = 3.

The equation of the axis of symmetry is x = p. Find p.[2]

a.i.

Hence, show that a = 2.[2]

a.ii.

The equation of L is y = 5 . Find the value of c.[3]

b.
Answer/Explanation

Markscheme

METHOD 1 (using symmetry to find p)

valid approach      (M1)

eg  \(\frac{{ – 1 + 3}}{2}\), 

p = 1     A1 N2

Note: Award no marks if they work backwards by substituting a = 2 into \( – \frac{b}{{2a}}\) to find p.

Do not accept \(p = \frac{2}{a}\).

METHOD 2 (calculating a first)
(i) & (ii) valid approach to calculate a      M1

eg   a + 4 − c = a(32) − 4(3) − c,  f(−1) = f(3)

correct working      A1

eg   8a = 16

a = 2      AG N0

valid approach to find p      (M1)

eg   \( – \frac{b}{{2a}},\,\,\,\frac{4}{{2\left( 2 \right)}}\)

p = 1      A1 N2

[2 marks]

a.i.

METHOD 1

valid approach       M1

eg  \( – \frac{b}{{2a}},\,\,\,\frac{4}{{2a}}\) (might be seen in (i)), f’ (1) = 0

correct equation     A1

eg  \(\frac{4}{{2a}}\) = 1, 2a(1) − 4 = 0

a = 2      AG N0

METHOD 2 (calculating a first)
(i) & (ii) valid approach to calculate a      M1

eg   a + 4 − c = a(32) − 4(3) − c,  f(−1) = f(3)

correct working      A1

eg   8a = 16

a = 2      AG N0

[2 marks]

a.ii.

valid approach      (M1)
eg   f(−1) = 5, f(3) =5

correct working       (A1)
eg   2 + 4 − c = 5, 18 − 12 − c = 5

c = 1     A1 N2

[3 marks]

b.

Question

[Maximum mark: 4] [without GDC]
The diagram shows the graph of the function \(y = ax^{2}+bx+c\).

Complete the table below to show whether each expression is positive, negative or
zero.

Answer/Explanation

Ans.

Graph of quadratic function.

Scroll to Top