IB Math Analysis & Approaches Questionbank-Topic: SL 1.9-The binomial theorem -SL Paper 1

Question

Consider the binomial expansion \((1+x)^7=x^7+ax^6+bx^5+35x^4+..+1 where x\neq 0 and a,b \in \mathbb{Z}^+\)
(a) Show that b = 21 . [2]
The third term in the expansion is the mean of the second term and the fourth term in the expansion.
(b) Find the possible values of x .

Answer/Explanation

Ans

Question

The values in the fourth row of Pascal’s triangle are shown in the following table.

N16/5/MATME/SP1/ENG/TZ0/03

Write down the values in the fifth row of Pascal’s triangle.

[2]
a.

Hence or otherwise, find the term in \({x^3}\) in the expansion of \({(2x + 3)^5}\).

[5]
b.
Answer/Explanation

Markscheme

1, 5, 10, 10, 5, 1     A2     N2

[2 marks]

a.

evidence of binomial expansion with binomial coefficient     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){a^{n – r}}{b^r}\), selecting correct term, \({(2x)^5}{(3)^0} + 5{(2x)^4}{(3)^1} + 10{(2x)^3}{(3)^2} +  \ldots \)

correct substitution into correct term     (A1)(A1)(A1)

eg\(\,\,\,\,\,\)\(10{(2)^3}{(3)^2},{\text{ }}\left( {\begin{array}{*{20}{c}} 5 \\ 3 \end{array}} \right){(2x)^3}{(3)^2}\)

Note: Award A1 for each factor.

\(720{x^3}\)     A1     N2

Notes: Do not award any marks if there is clear evidence of adding instead of multiplying.

Do not award final A1 for a final answer of 720, even if \(720{x^3}\) is seen previously.

[5 marks]

b.

Question

[Maximum mark: 6] [with / without GDC]

Complete the following expansion.

\((2+ax)^{4}=16+32ax+…\)

Answer/Explanation

Ans.

\(…+6×2^{2}(ax)^{2}+4×2(ax)^{3}+(ax)^{4}=…+24a^{2}x^{2}+8a^{3}x^{3}+a^{4}x^{4}\)

Question

[Maximum mark: 4] [with / without GDC]

Find the coefficient of a3b4 in the expansion of \((5a+b)^{7}\).

Answer/Explanation

Ans.

\((5a+b)^{7}=…+\binom{7}{4}(5a)^{3}(b)^{4}+…=\frac{7x6x5x4}{1x2x3x4}x5^{3}x(a^{3}b^{4})=35×5^{3}xa^{3}b^{4}\)

So the coefficient is 4375

Question

[Maximum mark: 6] [without GDC]

(a) Expand \(\left ( e+\frac{1}{e} \right )^{4}\) in terms of e.

(b) Express \(\left ( e+\frac{1}{e} \right )^{4}+\left ( e-\frac{1}{e} \right )^{4}\) as the sum of three terms.

Answer/Explanation

Ans.

(a)  \(\left ( e+\frac{1}{e} \right )^{4}=\binom{4}{0}e^{4}+\binom{4}{1}e^{3}\left ( \frac{1}{e} \right )+\binom{4}{2}e^{2}\left ( \frac{1}{e} \right )^{2}+\binom{4}{3}e\left ( \frac{1}{e} \right )^{3}+\binom{4}{4}\left ( \frac{1}{e} \right )^{4}\)

\(\left ( e+\frac{1}{e} \right )^{4}=e^{4}+4e^{3}\left ( \frac{1}{e} \right )+6e^{2}\left ( \frac{1}{e} \right )^{2}+4e\left ( \frac{1}{e} \right )^{3}+\left ( \frac{1}{e} \right )^{4}=e^{4}+4e^{2}+6+\frac{4}{e^{2}}+\frac{1}{e^{4}}\)

(b) \(\left ( e-\frac{1}{e} \right )^{4}=e^{4}-4e^{3}\left ( \frac{1}{e} \right )+6e^{2}\left ( \frac{1}{e} \right )^{2}-4e\left ( \frac{1}{e} \right )^{3}+\left ( \frac{1}{e} \right )^{4}=e^{4}-4e^{2}+6-\frac{4}{e^{2}}+\frac{1}{e^{4}}\)

Adding gives \(2e^{4}+12+\frac{2}{e^{4}}\)

Scroll to Top