Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.11 Transformations of graphs SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.11 Transformations of graphs SL Paper 1

Question

The following diagram shows the graph of a function \(f\), for −4 ≤ x ≤ 2.

On the same axes, sketch the graph of \(f\left( { – x} \right)\).

[2]
a.

Another function, \(g\), can be written in the form \(g\left( x \right) = a \times f\left( {x + b} \right)\). The following diagram shows the graph of \(g\).

Write down the value of a and of b.

[4]
b.
Answer/Explanation

Markscheme

A2 N2
[2 marks]

a.

recognizing horizontal shift/translation of 1 unit      (M1)

eg  = 1, moved 1 right

recognizing vertical stretch/dilation with scale factor 2      (M1)

eg   a = 2,  ×(−2)

a = −2,  b = −1     A1A1 N2N2

[4 marks]

b.

Question

Let \(f(x) = 3{(x + 1)^2} – 12\) .

Show that \(f(x) = 3{x^2} + 6x – 9\) .[2]

a.

For the graph of f

(i)     write down the coordinates of the vertex;

(ii)    write down the equation of the axis of symmetry;

(iii)   write down the y-intercept;

(iv)   find both x-intercepts.[8]

b(i), (ii), (iii) and (iv).

Hence sketch the graph of f .[2]

c.

Let \(g(x) = {x^2}\) . The graph of f may be obtained from the graph of g by the two transformations:

a stretch of scale factor t in the y-direction

followed by a translation of \(\left( {\begin{array}{*{20}{c}}
p\\
q
\end{array}} \right)\) .

Find \(\left( {\begin{array}{*{20}{c}}
p\\
q
\end{array}} \right)\) and the value of t.
[3]

d.
Answer/Explanation

Markscheme

\(f(x) = 3({x^2} + 2x + 1) – 12\)     A1

\( = 3{x^2} + 6x + 3 – 12\)     A1

\( = 3{x^2} + 6x – 9\)     AG     N0

[2 marks]

a.

(i) vertex is \(( – 1{\text{, }} – 12)\)     A1A1     N2

(ii) \(x = – 1\) (must be an equation)     A1     N1

(iii) \((0{\text{, }} – 9)\)     A1     N1

(iv) evidence of solving \(f(x) = 0\)     (M1)

e.g. factorizing, formula,

correct working     A1

e.g. \(3(x + 3)(x – 1) = 0\) , \(x = \frac{{ – 6 \pm \sqrt {36 + 108} }}{6}\)

\(( – 3{\text{, }}0)\), \((1{\text{, }}0)\)     A1A1     N1N1

[8 marks]

b(i), (ii), (iii) and (iv).

     A1A1     N2

Note: Award A1 for a parabola opening upward, A1 for vertex and intercepts in approximately correct positions.

[2 marks]

c.

\(\left( {\begin{array}{*{20}{c}}
p\\
q
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
{ – 12}
\end{array}} \right)\)
, \(t = 3\) (accept \(p = – 1\) , \(q = – 12\) , \(t = 3\) )     A1A1A1     N3

[3 marks]

d.

Question

Part of the graph of a function f is shown in the diagram below.


On the same diagram sketch the graph of \(y = – f(x)\) .

[2]
a.

Let \(g(x) = f(x + 3)\) .

(i)     Find \(g( – 3)\) .

(ii)    Describe fully the transformation that maps the graph of f to the graph of g.

[4]
b(i) and (ii).
Answer/Explanation

Markscheme

     M1A1     N2

Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex and all intercepts approximately correct.

a.

(i) \(g( – 3) = f(0)\)     (A1)

\(f(0) = – 1.5\)     A1     N2

(ii) translation (accept shift, slide, etc.) of \(\left( {\begin{array}{*{20}{c}}
{ – 3}\\
0
\end{array}} \right)\)    
A1A1     N2

[4 marks]

b(i) and (ii).

Question

Consider the following graph of a function y = f(x)

Sketch the graphs of the following functions (a) y = f(x) – 1    (b) \(y = \frac{f(x)}{x}\)     (c) y = -f(x) (d) y = f(x-1)      (e) \(y = f(\frac{x}{2})\)     (f) y = f(-x) (g) \(y=\begin{vmatrix}f(x)\end{vmatrix}\)     (h) \(y=f(\begin{vmatrix} x \end{vmatrix})\)   (g)\(=2f(\frac{1}{2}(x-1))\)

Answer/Explanation

Ans
Solutions are not provided

Scroll to Top