Home / IB Math AA Question bank-Topic: SL 2.7 The quadratic equations SL Paper 1

IB Math AA Question bank-Topic: SL 2.7 The quadratic equations SL Paper 1

Question

The diagram shows the graph of the quadratic function \(f(x)=ax^2+bx+c\) , with vertex 2, 10) .

                                 

The equation f (x) = k has two solutions. One of these solutions is x = 2 .

    1. Write down the other solution of f (x) = k . [2]

    2. Complete the table below placing a tick () to show whether the unknown parameters

      a and b are positive, zero or negative. The row for c has been completed as an example. [2]

       

      positive

      zero

      negative

      a

       

       

       

      b

       

       

       

      c

       

       

    3. State the values of x for which f (x) is decreasing. [2]

 

Answer/Explanation

Ans: 

(a)

(x= (-2))-4 OR x= (-2)- (2-(-2))

X= -6

(b)

(c) x > −2  OR x ≥ −2

Question

Let f (x)=- x2 + 4x + 5 and g (x) = -f (x) + k .

Find the values of k so that g (x) = 0 has no real roots.

Answer/Explanation

Ans:

Method 1(discriminant)

correct expression for g

eg \(-(-x^{2}+4x+5)+k\) ,\( x^{2}\)-4x-5+k = 0

evidence of discriminant

eg \(b^{2}-4ac,\Delta\)

correct substitution into discriminant of g

eg \((-4)^{2}-4(1)(-5+k)\), \(16-4(k-5)\)

recognizing discriminant is negative

eg \(\Delta <0, (-4)^{2}-4(1)(-5+k)<0, 16-4 (-1)(5)<0\)

correct working (must be correct inequality)

eg -4k<-36, k-5>4,16+20-4k<0 k>9

Question

Let f (x) = mx2 – 2mx , where x ∈ \(\mathbb{R}\) and m ∈  \(\mathbb{R}\) The line y = mx – 9 meets the graph of f

at exactly one point.

(a)        Show that m = 4 .                                                                                                                                                                         [6]

The function f can be expressed in the form f (x) = 4(x p)(x q) , where p , q ∈  \(\mathbb{R}\).

(b) Find the value of p and the value of q .                                                                                                                                   [2]

The function f can also be expressed in the form f (x) = 4(x h)2 + k , where h , k ∈  \(\mathbb{R}\).

(c) Find the value of h and the value of k .                                                                                                                                     [3]

(d)        Hence find the values of x where the graph of f is both negative and increasing.                                                         [3]

Answer/Explanation

Ans

Question

Let \(f(x) = 3{\tan ^4}x + 2k\) and \(g(x) =  – {\tan ^4}x + 8k{\tan ^2}x + k\), for \(0 \leqslant x \leqslant 1\), where \(0 < k < 1\). The graphs of \(f\) and \(g\) intersect at exactly one point. Find the value of \(k\).

Answer/Explanation

Markscheme

discriminant \( = 0\) (seen anywhere)     M1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(f = g,{\text{ }}3{\tan ^4}x + 2k =  – {\tan ^4}x + 8k{\tan ^2}x + k\)

rearranging their equation (to equal zero)     (M1)

eg\(\,\,\,\,\,\)\(4{\tan ^4}x – 8k{\tan ^2}x + k = 0,{\text{ }}4{\tan ^4}x – 8k{\tan ^2}x + k\)

recognizing LHS is quadratic     (M1)

eg\(\,\,\,\,\,\)\(4{({\tan ^2}x)^2} – 8k{\tan ^2}x + k = 0,{\text{ }}4{m^2} – 8km + k\)

correct substitution into discriminant     A1

eg\(\,\,\,\,\,\)\({( – 8k)^2} – 4(4)(k)\)

correct working to find discriminant or solve discriminant \( = 0\)     (A1)

eg\(\,\,\,\,\,\)\(64{k^2} – 16k,{\text{ }}\frac{{ – ( – 16) \pm \sqrt {{{16}^2}} }}{{2 \times 64}}\)

correct simplification     (A1)

egx\(\,\,\,\,\,\)\(16k(4k – 1),{\text{ }}\frac{{32}}{{2 \times 64}}\)

\(k = \frac{1}{4}\)     A1     N2

[8 marks]

Question

Three consecutive terms of a geometric sequence are \(x – 3\), 6 and \(x + 2\).

Find the possible values of \(x\).

Answer/Explanation

Markscheme

METHOD 1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(r = \frac{6}{{x – 3}},{\text{ }}(x – 3) \times r = 6,{\text{ }}(x – 3){r^2} = x + 2\)

correct equation in terms of \(x\) only     A1

eg\(\,\,\,\,\,\)\(\frac{6}{{x – 3}} = \frac{{x + 2}}{6},{\text{ }}(x – 3)(x + 2) = {6^2},{\text{ }}36 = {x^2} – x – 6\)

correct working     (A1)

eg\(\,\,\,\,\,\)\({x^2} – x – 42,{\text{ }}{x^2} – x = 42\)

valid attempt to solve their quadratic equation     (M1)

eg\(\,\,\,\,\,\)factorizing, formula, completing the square

evidence of correct working     (A1)

eg\(\,\,\,\,\,\)\((x – 7)(x + 6),{\text{ }}\frac{{1 \pm \sqrt {169} }}{2}\)

\(x = 7,{\text{ }}x =  – 6\)     A1     N4

METHOD 2 (finding r first)

valid approach     (M1)

eg\(\,\,\,\,\,\)\(r = \frac{6}{{x – 3}},{\text{ }}6r = x + 2,{\text{ }}(x – 3){r^2} = x + 2\)

correct equation in terms of \(r\) only     A1

eg\(\,\,\,\,\,\)\(\frac{6}{r} + 3 = 6r – 2,{\text{ }}6 + 3r = 6{r^2} – 2r,{\text{ }}6{r^2} – 5r – 6 = 0\)

evidence of correct working     (A1)

eg\(\,\,\,\,\,\)\((3r + 2)(2r – 3),{\text{ }}\frac{{5 \pm \sqrt {25 + 144} }}{{12}}\)

\(r =  – \frac{2}{3},{\text{ }}r = \frac{3}{2}\)    A1

substituting their values of \(r\) to find \(x\)     (M1)

eg\(\,\,\,\,\,\)\((x – 3)\left( {\frac{2}{3}} \right) = 6,{\text{ }}x = 6\left( {\frac{3}{2}} \right) – 2\)

\(x = 7,{\text{ }}x =  – 6\)    A1     N4

[6 marks]

Examiners report

Nearly all candidates attempted to set up an expression, or pair of expressions, for the common ratio of the geometric sequence. When done correctly, these expressions led to a quadratic equation which was solved correctly by many candidates.

Question

[Maximum mark: 7] [without GDC]
The quadratic equation \(kx^{2}+(k-3)x+1=0\) has two equal real roots.
(a) Find the possible values of \(k\).
(b) Write down the values of \(k\) for which \(x^{2}+(k-3)x+k=0\) has two equal real roots.

Answer/Explanation

Ans.

(a) \((k-3)^{2}-4xkx1=0, k^{2}-10k+9=0\)

\(k = 1, k = 9\)

(b) \(k = 1, k = 9\)

Scroll to Top