Home / IB Math Analysis & Approaches Question bank-Topic SL 5.4- Tangents and normals, and their equations SL Paper 1

IB Math Analysis & Approaches Question bank-Topic SL 5.4- Tangents and normals, and their equations SL Paper 1

Question

Consider the curve with equation \( y=(2x-1)e^{kx}, \) where  \(x\in \mathbb{R} \) and  \(k\in \mathbb{Q}\)
The tangent to the curve at the point where x = 1 is parallel to the line \(y=5e^kx\)
Find the value of k .

Answer/Explanation

Ans:

Question

Let y = \(\frac{Inx}{x^{4}}\) for x > 0.

(a)        Show that \(\frac{dy}{dx}= \frac{1-4Inx}{x^{5}}\)

Consider the function defined  by f (x) \(\frac{Inx}{x^{4}}\) =  for x> 0 and its graph y = f (x) .

(b)        The graph of has a horizontal tangent at point P. Find the coordinates of P.                                                      [5]

(c)        Given that f ” (x) = \(\frac{20Lnx-9}{x^{6}}\) show that P is a local maximum point.                                                [3]

(d)        Solve f (x) > 0 for x > 0.                                                                                                                                                          [2]

(e) Sketch the graph of f , showing clearly the value of the x-intercept and the approximate position of point P.    [3]

Answer/Explanation

Ans

Question

Consider the functions f (x) = -(x – h)2 + 2k and g(x) = e x-2 + k where h , k ∈ R.
(a) Find f ′(x).   [1]
The graphs of f and g have a common tangent at x = 3

(b) Show that h + = \(\frac{e+6}{2}\) [3]

(c) Hence, show that  k = \(e+ \frac{e^{2}}{4}\) [3]

Answer/Explanation

Ans

(a) f ‘( x) = −2( x − h)

(b)

\(g'(x) = e^{x-2}\) or \(g'(3)=e^{3-2}= e\)
Now given that f and g has common tangent at x=3
Hence  \(f'(3) =g'(3)\)
\(f'(x)= -2 (x-h)\)  or
\(f'(3)=-2(3-h)\)
Hence

\(-2(3-h) =e\)
or
\(h = \frac{e+6}{2}\)

(c )

\(f(3)=g(3) \) as function has common tangent at  \(x=3 \) , hence both function has common values as well
\(-(3-h)^2 +2k= e^{3-2}+k\)
putting the value of e from part (b)
\(-(3-\frac{e+6}{2})^2 + 2k = e+k\)
or
\(k = e+ \frac{e^{2}}{4}\)

Question

Consider \(f(x) = \frac{1}{3}{x^3} + 2{x^2} – 5x\) . Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.


Find \(f'(x)\) .[3]

a.

Find the x-coordinate of M.[4]

b.

Find the x-coordinate of N.[3]

c.

The line L is the tangent to the curve of f at \((3{\text{, }}12)\). Find the equation of L in the form \(y = ax + b\) .[4]

d.
Answer/Explanation

Markscheme

\(f'(x) = {x^2} + 4x – 5\)     A1A1A1     N3

[3 marks]

a.

evidence of attempting to solve \(f'(x) = 0\)     (M1)

evidence of correct working     A1

e.g. \((x + 5)(x – 1)\) , \(\frac{{ – 4 \pm \sqrt {16 + 20} }}{2}\) , sketch

\(x = – 5\), \(x = 1\)     (A1)

so \(x = – 5\)     A1     N2

[4 marks]

b.

METHOD 1

\(f”(x) = 2x + 4\) (may be seen later)     A1

evidence of setting second derivative = 0     (M1)

e.g. \(2x + 4 = 0\)

\(x = – 2\)     A1     N2

METHOD 2

evidence of use of symmetry     (M1)

e.g. midpoint of max/min, reference to shape of cubic

correct calculation     A1

e.g. \(\frac{{ – 5 + 1}}{2}\)

\(x = – 2\)     A1     N2

[3 marks]

c.

attempting to find the value of the derivative when \(x = 3\)     (M1)

\(f'(3) = 16\)     A1

valid approach to finding the equation of a line     M1

e.g. \(y – 12 = 16(x – 3)\) , \(12 = 16 \times 3 + b\)

\(y = 16x – 36\)     A1     N2

[4 marks]

d.

Question

Let \(f(x) = \sqrt x \) . Line L is the normal to the graph of f at the point (4, 2) .

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L .


Show that the equation of L is \(y = – 4x + 18\) .

[4]
a.

Point A is the x-intercept of L . Find the x-coordinate of A.

[2]
b.

Find an expression for the area of R .

[3]
c.

The region R is rotated \(360^\circ \) about the x-axis. Find the volume of the solid formed, giving your answer in terms of \(\pi \) .

[8]
d.
Answer/Explanation

Markscheme

finding derivative     (A1)

e.g. \(f'(x) = \frac{1}{2}{x^{\frac{1}{2}}},\frac{{1}}{{2\sqrt x }}\)

correct value of derivative or its negative reciprocal (seen anywhere)     A1

e.g. \(\frac{1}{{2\sqrt 4 }}\) , \(\frac{1}{4}\)

gradient of normal =  \(\frac{1}{{{\text{gradient of tangent}}}}\) (seen anywhere)     A1

e.g. \( – \frac{1}{{f'(4)}} = – 4\) , \( – 2\sqrt x \)

substituting into equation of line (for normal)     M1

e.g. \(y – 2 = – 4(x – 4)\)

\(y = – 4x + 18\)     AG     N0

[4 marks]

a.

recognition that \(y = 0\) at A     (M1)

e.g. \( – 4x + 18 = 0\)

\(x = \frac{{18}}{4}\) \(\left( { = \frac{9}{2}} \right)\)     A1     N2

[2 marks]

b.

splitting into two appropriate parts (areas and/or integrals)     (M1)

correct expression for area of R     A2     N3

e.g. area of R = \(\int_0^4 {\sqrt x } {\rm{d}}x + \int_4^{4.5} {( – 4x + 18){\rm{d}}x} \) , \(\int_0^4 {\sqrt x } {\rm{d}}x + \frac{1}{2} \times 0.5 \times 2\) (triangle)

Note: Award A1 if dx is missing.

[3 marks]

c.

correct expression for the volume from \(x = 0\) to \(x = 4\)     (A1)

e.g. \(V = \int_0^4 {\pi \left[ {f{{(x)}^2}} \right]} {\rm{d}}x\) , \({\int_0^4 {\pi \sqrt x } ^2}{\rm{d}}x\) , \(\int_0^4 {\pi x{\rm{d}}x} \)

\(V = \left[ {\frac{1}{2}\pi {x^2}} \right]_0^4\)     A1

\(V = \pi \left( {\frac{1}{2} \times 16 – \frac{1}{2} \times 0} \right)\)     (A1)

\(V = 8\pi \)     A1

finding the volume from \(x = 4\) to \(x = 4.5\)

EITHER

recognizing a cone     (M1)

e.g. \(V = \frac{1}{3}\pi {r^2}h\)

\(V = \frac{1}{3}\pi {(2)^2} \times \frac{1}{2}\)     (A1)

\( = \frac{{2\pi }}{3}\)     A1

total volume is \(8\pi  + \frac{2}{3}\pi \) \(\left( { = \frac{{26}}{3}\pi } \right)\)     A1     N4

OR

\(V = \pi \int_4^{4.5} {{{( – 4x + 18)}^2}{\rm{d}}x} \)     (M1)

\( = \int_4^{4.5} {\pi (16{x^2} – 144x + 324){\rm{d}}x} \)

\( = \pi \left[ {\frac{{16}}{3}{x^3} – 72{x^2} + 324x} \right]_4^{4.5}\)     A1

\( = \frac{{2\pi }}{3}\)     A1

total volume is \(8\pi  + \frac{2}{3}\pi \) \(\left( { = \frac{{26}}{3}\pi } \right)\)     A1     N4

[8 marks]

d.
Scroll to Top