Home / IB Math AA Question bank-Topic: SL 5.5 Areas under curves SL Paper 1

IB Math AA Question bank-Topic: SL 5.5 Areas under curves SL Paper 1

Question

Let \(f(x) = 6 + 6\sin x\) . Part of the graph of f is shown below.


The shaded region is enclosed by the curve of f , the x-axis, and the y-axis.

Solve for \(0 \le x < 2\pi \)

(i)     \(6 + 6\sin x = 6\) ;

(ii)    \(6 + 6\sin x = 0\) .

[5]
a(i) and (ii).

Write down the exact value of the x-intercept of f , for \(0 \le x < 2\pi \) .

[1]
b.

The area of the shaded region is k . Find the value of k , giving your answer in terms of \(\pi \) .

[6]
c.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Give a full geometric description of this transformation.

[2]
d.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Given that \(\int_p^{p + \frac{{3\pi }}{2}} {g(x){\rm{d}}x}  = k\) and \(0 \le p < 2\pi \) , write down the two values of p.

[3]
e.
Answer/Explanation

Markscheme

(i) \(\sin x = 0\)     A1

\(x = 0\) , \(x = \pi \)     A1A1     N2

(ii) \(\sin x = – 1\)     A1

\(x = \frac{{3\pi }}{2}\)    A1     N1

[5 marks]

a(i) and (ii).

\(\frac{{3\pi }}{2}\)     A1     N1

[1 mark]

b.

evidence of using anti-differentiation     (M1)

e.g. \(\int_0^{\frac{{3\pi }}{2}} {(6 + 6\sin x){\rm{d}}x} \)

correct integral \(6x – 6\cos x\) (seen anywhere)     A1A1

correct substitution     (A1)

e.g. \(6\left( {\frac{{3\pi }}{2}} \right) – 6\cos \left( {\frac{{3\pi }}{2}} \right) – ( – 6\cos 0)\) , \(9\pi  – 0 + 6\)

\(k = 9\pi + 6\)     A1A1     N3

[6 marks]

c.

translation of \(\left( {\begin{array}{*{20}{c}}
{\frac{\pi }{2}}\\
0
\end{array}} \right)\)     A1A1     N2

[2 marks]

d.

recognizing that the area under g is the same as the shaded region in f     (M1)

\(p = \frac{\pi }{2}\) , \(p = 0\)     A1A1     N3

[3 marks]

e.

Question

The following diagram shows part of the graph of the function \(f(x) = 2{x^2}\) .



The line T is the tangent to the graph of f at \(x = 1\) .

Show that the equation of T is \(y = 4x – 2\) .

[5]
a.

Find the x-intercept of T .

[2]
b.

The shaded region R is enclosed by the graph of f , the line T , and the x-axis.

(i)     Write down an expression for the area of R .

(ii)    Find the area of R .

[9]
c(i) and (ii).
Answer/Explanation

Markscheme

\(f(1) = 2\)     (A1)

\(f'(x) = 4x\)     A1

evidence of finding the gradient of f at \(x = 1\)     M1

e.g. substituting \(x = 1\) into \(f'(x)\)

finding gradient of f at \(x = 1\)     A1

e.g. \(f'(1) = 4\)

evidence of finding equation of the line     M1

e.g. \(y – 2 = 4(x – 1)\) , \(2 = 4(1) + b\)

\(y = 4x – 2\)     AG     N0

[5 marks]

a.

appropriate approach     (M1)

e.g. \(4x – 2 = 0\)

\(x = \frac{1}{2}\)     A1     N2

[2 marks]

b.

(i) bottom limit \(x = 0\) (seen anywhere)     (A1)

approach involving subtraction of integrals/areas     (M1)

e.g. \(\int {f(x) – {\text{area of triangle}}} \) , \(\int {f – \int l } \)

correct expression     A2     N4

e.g. \(\int_0^1 {2{x^2}{\rm{d}}x – } \int_{0.5}^1 {(4x – 2){\rm{d}}x} \) , \(\int_0^1 {f(x){\rm{d}}x – \frac{1}{2}} \) , \(\int_0^{0.5} {2{x^2}{\rm{d}}x}  + \int_{0.5}^1 {(f(x) – (4x – 2)){\rm{d}}x} \)

(ii) METHOD 1 (using only integrals)

correct integration     (A1)(A1)(A1)

\(\int {2{x^2}{\rm{d}}x}  = \frac{{2{x^3}}}{3}\) , \(\int {(4x – 2){\rm{d}}x = } 2{x^2} – 2x\)

substitution of limits     (M1)

e.g. \(\frac{1}{{12}} + \frac{2}{3} – 2 + 2 – \left( {\frac{1}{{12}} – \frac{1}{2} + 1} \right)\)

area = \(\frac{1}{6}\)     A1     N4

METHOD 2 (using integral and triangle)

area of triangle = \(\frac{1}{2}\)     (A1)

correct integration     (A1)

\(\int {2{x^2}{\rm{d}}x = } \frac{{2{x^3}}}{3}\)

substitution of limits     (M1)

e.g. \(\frac{2}{3}{(1)^3} – \frac{2}{3}{(0)^3}\) , \(\frac{2}{3} – 0\)

correct simplification     (A1)

e.g. \(\frac{2}{3} – \frac{1}{2}\)

area = \(\frac{1}{6}\)     A1     N4

[9 marks]

c(i) and (ii).

Question

The following is the graph of a function \(f\) , for \(0 \le x \le 6\) .


The first part of the graph is a quarter circle of radius \(2\) with centre at the origin.

(a)     Find \(\int_0^2 {f(x){\rm{d}}x} \) .

(b)     The shaded region is enclosed by the graph of \(f\) , the \(x\)-axis, the \(y\)-axis and the line \(x = 6\) . The area of this region is \(3\pi \) .

Find \(\int_2^6 {f(x){\rm{d}}x} \) .

[7]
.

Find \(\int_0^2 {f(x){\rm{d}}x} \) .

[4]
a.

The shaded region is enclosed by the graph of \(f\) , the \(x\)-axis, the \(y\)-axis and the line \(x = 6\) . The area of this region is \(3\pi \) .

Find \(\int_2^6 {f(x){\rm{d}}x} \) .

[3]
b.
Answer/Explanation

Markscheme

(a)     attempt to find quarter circle area     (M1)

eg   \(\frac{1}{4}(4\pi )\) , \(\frac{{\pi {r^2}}}{4}\) , \(\int_0^2 {\sqrt {4 – {x^2}{\rm{d}}x} } \)

area of region \( = \pi \)     (A1)

\(\int_0^2 {f(x){\rm{d}}x = – \pi } \)     A2     N3

[4 marks]

(b)     attempted set up with both regions     (M1)

eg   \({\text{shaded area}} – {\text{quarter circle}}\) , \(3\pi  – \pi \) , \(3\pi  – \int_0^2 {f = \int_2^6 f } \) 

\(\int_2^6 {f(x){\rm{d}}x = 2\pi } \)     A2     N2

[3 marks]

Total [7 marks]

.

attempt to find quarter circle area     (M1)

eg   \(\frac{1}{4}(4\pi )\) , \(\frac{{\pi {r^2}}}{4}\) , \(\int_0^2 {\sqrt {4 – {x^2}{\rm{d}}x} } \)

area of region \( = \pi \)     (A1)

\(\int_0^2 {f(x){\rm{d}}x = – \pi } \)     A2     N3

[4 marks]

a.

attempted set up with both regions     (M1)

eg   \({\text{shaded area}} – {\text{quarter circle}}\) , \(3\pi  – \pi \) , \(3\pi  – \int_0^2 {f = \int_2^6 f } \) 

\(\int_2^6 {f(x){\rm{d}}x = 2\pi } \)     A2     N2

[3 marks]

Total [7 marks]

b.
Scroll to Top