Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.5 Composite functions SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.5 Composite functions SL Paper 1

Question

The graph of y = f (x) for -4 ≤ x ≤ 6 is shown in the following diagram.

 
 (a)        Write down the value of

 (i)       f (2) ;

(ii)      ( f o f )(2) .                                                                                                                                                             [2]

 (b)        Let g(x) = \(\frac{1}{2} f (x) +1\) for -4 ≤ x ≤ 6 . On the axes above, sketch the graph of g .                   [3]

Answer/Explanation

Ans:

(a) (i) f(2) = 6

(ii) (fof)2=− 2 [2 marks]

(b)

 

Question

Let \(f(x) = \ln (x + 5) + \ln 2\) , for \(x > – 5\) .

Find \({f^{ – 1}}(x)\) .[4]

a.

Let \(g(x) = {{\rm{e}}^x}\) .

Find \((g \circ f)(x)\) , giving your answer in the form \(ax + b\) , where \(a,b \in \mathbb{Z}\) .[3]

b.
Answer/Explanation

Markscheme

METHOD 1

\(\ln (x + 5) + \ln 2 = \ln (2(x + 5))\) \(( = \ln (2x + 10))\)     (A1)

interchanging x and y (seen anywhere)     (M1)

e.g. \(x = \ln (2y + 10)\)

evidence of correct manipulation     (A1)

e.g. \({{\rm{e}}^x} = 2y + 10\)

\({f^{ – 1}}(x) = \frac{{{{\rm{e}}^x} – 10}}{2}\)    A1     N2

METHOD 2

\(y = \ln (x + 5) + \ln 2\)

\(y – \ln 2 = ln(x + 5)\)     (A1)

evidence of correct manipulation     (A1)

e.g. \({{\rm{e}}^{y – \ln 2}} = x + 5\)

interchanging x and y (seen anywhere)     (M1)

e.g. \({{\rm{e}}^{x – \ln 2}} = y + 5\)

\({f^{ – 1}}(x) = {{\rm{e}}^{x – \ln 2}} – 5\)     A1     N2

[4 marks]

a.

METHOD 1

evidence of composition in correct order     (M1)

e.g. \((g \circ f)(x) = g(\ln (x + 5) + \ln 2)\)

\( = {{\rm{e}}^{\ln (2(x + 5))}} = 2(x + 5)\)

\((g \circ f)(x) = 2x + 10\)     A1A1     N2

METHOD 2

evidence of composition in correct order     (M1)

e.g. \((g \circ f)(x) = {{\rm{e}}^{\ln (x + 5) + \ln 2}}\)

\( = {{\rm{e}}^{\ln (x + 5)}} \times {{\rm{e}}^{\ln 2}} = (x + 5)2\)

\((g \circ f)(x) = 2x + 10\)     A1A1     N2

[3 marks]

b.

Question

Let \(f(x) = {x^2}\) and \(g(x) = 2x – 3\) .

Find \({g^{ – 1}}(x)\) .[2]

a.

Find \((f \circ g)(4)\) .[3]

b.
Answer/Explanation

Markscheme

for interchanging x and y (may be done later)     (M1)

e.g. \(x = 2y – 3\)

\({g^{ – 1}}(x) = \frac{{x + 3}}{2}\) (accept \(y = \frac{{x + 3}}{2},\frac{{x + 3}}{2}\) )     A1     N2

[2 marks]

a.

METHOD 1

\(g(4) = 5\)     (A1)

evidence of composition of functions     (M1)

\(f(5) = 25\)     A1 N3

METHOD 2

\(f \circ g(x) = {(2x – 3)^2}\)     (M1)

\(f \circ g(4) = {(2 \times 4 – 3)^2}\)     (A1)

= 25     A1     N3

[3 marks]

b.

Question

Let \(f(x)=6x\sqrt{(1-x^2)}, for -1\leq x\leq 1\)
and \(g(x) =cos(x), \) for \( for 0\leq x\leq \pi\)
Let \(h(x) =(fog)(x)\)
a. Write \(h(x)\)  in the form \(asin(bx)\), where  \(a,b \in \mathbb{Z}\)

Answer/Explanation

Ans

\(f(x)=6x\sqrt{(1-x^2)}\)
\(g(x) =cos(x)\)
hence
\(h(x) =(fog)(x)\)
\(=f(g(x))\)
\(=f(cos(x))\)
\(=6cos(x)\sqrt{(1-(cos(x))^2)}\)
Now  \(cos^2(x) +sin^2(x) =1\)
Hence
\(h(x) =6cos(x)\sqrt{sin^2(x)}=6cos(x) \times sin(x)\)
now  \(2cos(x) \times sin(x) =sin 2x\)
hence
\(h(x) =3sin 2x\)
\(a=3\)  and \( b=2\)

Question

Let \(f(x) = 8x + 3\) and \(g(x) = 4x\), for \(x \in \mathbb{R}\).

Write down \(g(2)\).[1]

a.

Find \((f \circ g)(x)\).[2]

b.

Find \({f^{ – 1}}(x)\).[2]

c.
Answer/Explanation

Markscheme

\(g(2) = 8\)    A1     N1

[1 mark]

a.

attempt to form composite (in any order)     (M1)

eg\(\,\,\,\,\,\)\(f(4x),{\text{ }}4 \times (8x + 3)\)

\((f \circ g)(x) = 32x + 3\)     A1     N2

[2 marks]

b.

interchanging \(x\) and \(y\) (may be seen at any time)     (M1)

eg\(\,\,\,\,\,\)\(x = 8y + 3\)

\({f^{ – 1}}(x) = \frac{{x – 3}}{8}\,\,\,\,\,\left( {{\text{accept }}\frac{{x – 3}}{8},{\text{ }}y = \frac{{x – 3}}{8}} \right)\)     A1     N2

[2 marks]

c.

Question

[Maximum mark: 6] [without GDC]
Let \(g(x)=3x-2\),                  \(h(x)=\frac{5x}{x-4}\),      \( x\neq 4\).

(a) Find an expression for (h ◦ g) (x). Simplify your answer.
(b) Solve the equation (h ◦ g) (x) = 0.

Answer/Explanation

(a) (h ◦ g) (x) = \(\frac{5(3x-2)}{(3x-2)-4}=\frac{15x-10}{3x-6}\)

(b) numerator = \(0\Rightarrow M1)x=\frac{2}{3} (=0.667)\)

Scroll to Top