Home / IB Math AA: Question bank-Topic SL 5.1 Derivative interpreted as gradient function and as rate of change SL Paper 1

IB Math AA: Question bank-Topic SL 5.1 Derivative interpreted as gradient function and as rate of change SL Paper 1

Question

Consider the function f ( x ) = ax3 + bx2 + cx + d, where x ∈ R and a, b, c , d ∈ R.

    1. (i) Write down an expression for f ( x ).

      (ii) Hence, given that f 1 does not exist, show that b2 3ac > 0 . [4]

    2. Consider the function g ( x ) \(\frac{1}{2}\)  x3 3x2 + 6x – 8 , where x ∈ R.

      1. Show that g1 exists.

      2. g ( x ) can be written in the form p ( x – 2 )3 + q , where p , q ∈ R. Find the value of p and the value of q .

      3. Hence find g1 ( x ). [8]

        The graph of y = g ( x ) may be obtained by transforming the graph of y = x3 using a sequence of three transformations.

    3. State each of the transformations in the order in which they are applied. [3]

    4. Sketch the graphs of y = g ( x ) and y = g1 ( x ) on the same set of axes, indicating the points where each graph crosses the coordinate axes. [5]

Answer/Explanation

Ans: 

  1. (a) (i) f'(x)=\(3ax^{2}\)+2bx+c
  2. (a) (ii)
    1. \(since f^{-1}\)dose not exist , there must be two turning points
    2. (f(x)= 0)has more than one solutin
    3. using the disriminat Δ >0
    4.  \(4b^{2}-12ac>0\)
    5. \(b^{2}\)-3ac>0
  3. (b) (i)
    1. METHOD 1
    2. \(b^{2}-3ac=(-3)^{2}-3\times \frac{1}{2}\times 6\) = 9-9 = 0 
    3. hence g-1 exists 
    4. METHOD 2
    5. g'(x)= \(\frac{3}{2}x^{2}-6x+6\)
    6. \(\Delta = (-6)^{2}-4\times \frac{3}{2}\times 6\)
    7. Δ = 36 -36 = 0 ⇒ there is (only) one point with gradient of 0 and this must be a point of inflexion (since g (x ) is a cubic.)

hence g-1 exists 

  1. (b) (ii)
    1. p= \(\frac{1}{2}\)
    2. \((x-2)^{3}=x^{3}-6x^{2}\)+12x=8
    3. \(\frac{1}{2}(x^{3}-6x^{3}+12x-8)\)= \(\frac{1}{2}x^{3}-3x^{2}+6x-4\)
    4. g(x)=\(\frac{1}{2}(x-2)^{3}-4\)
  2. (b) (iii)
    1. x= \(\frac{1}{2}(y-2)^{3}-4\)
  3. (c)
    1. translation through \(\begin{pmatrix}
      2\\
      0
      \end{pmatrix}\)
    2. EITHER
    3. a stretch scale factor \(\frac{1}{2}\) parallel to the y-axis then a translation through \((_{-4}^{0})\)
    4. OR
    5. a translation through  \((_{-8}^{0})\) then a stretch scale factor \(\frac{1}{2}\) parallel to the y-axis
  4. (d)

Question

The acceleration, a ms-2 , of a particle moving in a horizontal line at time t seconds, t ≥ 0 , is given by a = – (1+v) where v ms-1 is the particle’s velocity and v > -1.
At t = 0 , the particle is at a fixed origin O and has initial velocity v0 ms-1 .

(a) By solving an appropriate differential equation, show that the particle’s velocity at time t is given by v ( t ) = (1 + v0) e-t – 1 . [6]

(b) Initially at O, the particle moves in the positive direction until it reaches its maximum displacement from O. The particle then returns to O.

Let s metres represent the particle’s displacement from O and smax its maximum displacement from O.
(i) Show that the time T taken for the particle to reach smax satisfies the equation eT = 1 + v0 .
(ii) By solving an appropriate differential equation and using the result from part (b) (i), find an expression for smax in terms of v0 . [7]

Let v (T – k) represent the particle’s velocity k seconds before it reaches smax , where v (T – k) = (1 + v0) e-(T – k) – 1 .

(c) By using the result to part (b) (i), show that v (T – k) = ek – 1 . [2]

Similarly, let v (T + k) represent the particle’s velocity k seconds after it reaches smax .

(d) Deduce a similar expression for v (T + k) in terms of k . [2]

(e) Hence, show that v (T – k) + v (T + k) ≥ 0 . [3]

Answer/Explanation

Ans:

(a) Since $a=\frac{\text{d}v}{\text{d}t}$, and $a=-\left(1+v\right)$, we have
$$\begin{eqnarray}
\frac{\text{d}v}{\text{d}t} = -1-v \nonumber \\
\frac{\text{d}v}{\text{d}t}+v = -1.
\end{eqnarray}$$
Let $\text{I}\left(x\right)=\text{e}^{\int 1 \text{d}t}=\text{e}^t$.<br>
Then, we have
$$\begin{eqnarray}
\frac{\text{d}}{\text{d}t}\left(v\text{e}^t\right) = -\text{e}^t \nonumber \\
v\text{e}^t = -\int\text{e}^t \text{d}t \nonumber \\
v\text{e}^t = -\text{e}^t+c \nonumber \\
v = c\text{e}^{-t}-1.
\end{eqnarray}$$
Since $v=v_0$ when $t=0$, we have $c=1+v_0$, i.e., $v=\left(1+v_0\right)\text{e}^{-t}-1$.<br>
(b)(i) At $s_{\text{max}}$, $t=T$, i.e., we have
$$\begin{eqnarray}
v\left(T\right) = 0 \nonumber \\
\left(1+v_0\right)\text{e}^{-T}-1 = 0 \nonumber \\
\left(1+v_0\right)\text{e}^{-T} = 1 \nonumber \\
1+v_0 = \text{e}^T.
\end{eqnarray}$$
(b)(ii) Since $\frac{\text{d}s}{\text{d}t}=\left(1+v_0\right)\text{e}^{-t}-1$, integrating both sides with respect to $t$, we have
$$\begin{eqnarray}
s &=& \int\left(1+v_0\right)\text{e}^{-t}-1\text{d}t \nonumber \\
&=& -\left(1+v_0\right)\text{e}^{-t}-t+c.
\end{eqnarray}$$
When $t=0$, $s=0$, i.e.,
$$\begin{eqnarray}
0 = -\left(1+v_0\right)+c \nonumber \\
c = \left(1+v_0\right).
\end{eqnarray}$$
Thus, $s=\left(1+v_0\right)-\left(1+v_0\right)\text{e}^{-t}-t$.<br>
Since from (b)(i) we have $1+v_0=\text{e}^T$, $T=\ln\left(1+v_0\right)$, i.e., $s_{\text{max}}=v_0-\ln \left(1+v_0\right)$.<br>
(c) Since $\text{e}^T=1+v_0$, we have $\left(1+v_0\right)\text{e}^{-T}=1$, i.e.,
$$\begin{eqnarray}
v\left(T-k\right) &=& \left(1+v_0\right)\text{e}^{-\left(T-k\right)}-1 \nonumber \\
&=& \left(1+v_0\right)\text{e}^{-T}\text{e}^k-1 \nonumber \\
&=& \text{e}^k-1.
\end{eqnarray}$$
(d) Similarly, as in (c),
$$\begin{eqnarray}
v\left(T+k\right) &=& \left(1+v_0\right)\text{e}^{-\left(T+k\right)}-1 \nonumber \\
&=& \left(1+v_0\right)\text{e}^{-T}\text{e}^{-k}-1 \nonumber \\
&=& \text{e}^{-k}-1.
\end{eqnarray}$$
(e)
$$\begin{eqnarray}
v\left(T-k\right)+v\left(T+k\right) &=& \text{e}^k-1+\text{e}^{-k}-1 \nonumber \\
&=& \text{e}^k+\text{e}^{-k}-2 \nonumber \\
&=& \frac{\text{e}^{2k}-2\text{e}^k+1}{\text{e}^k} \nonumber \\
&=& \frac{\left(\text{e}^k-1\right)^2}{\text{e}^k} \geq 0.
\end{eqnarray}$$

Question

Consider the function f defined by f (x) = ln (x2 – 16) for x > 4 .
The following diagram shows part of the graph of f which crosses the x-axis at point A, with
coordinates ( a , 0 ). The line L is the tangent to the graph of f at the point B.

(a) Find the exact value of a . [3]

(b) Given that the gradient of L is \(\frac{1}{3}\) , find the x-coordinate of B. [6]

Answer/Explanation

Ans:

(a) When f(x)=0, we have
ln(x2−16)=0

x2−16=1

x=±√17
However, since x>4, we have x=√17
(b) Differentiating f(x) with respect to x, we have f′(x)= \(\frac{2x}{x^2-16}\)
At B, f′(x)=\(\frac{1}{3}\) , i.e., we have
x2−16=6x

x2−6x−16=0

(x+2)(x−8)=0.
Thus, x=−2 (reject) or x=8.

Question

Using the definition of a derivative as \(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x + h) – f(x)}}{h}} \right)\) , show that the derivative of \(\frac{1}{{2x + 1}}{\text{ is }}\frac{{ – 2}}{{{{(2x + 1)}^2}}}\).[4]

a.

Prove by induction that the \({n^{{\text{th}}}}\) derivative of \({(2x + 1)^{ – 1}}\) is \({( – 1)^n}\frac{{{2^n}n!}}{{{{(2x + 1)}^{n + 1}}}}\).[9]

b.
Answer/Explanation

Markscheme

let \(f(x) = \frac{1}{{2x + 1}}\) and using the result \(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x + h) – f(x)}}{h}} \right)\)

\(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{\frac{1}{{2(x + h) + 1}} – \frac{1}{{2x + 1}}}}{h}} \right)\)     M1A1

\( \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{[2x + 1] – [2(x + h) + 1]}}{{h[2(x + h) + 1][2x + 1]}}} \right)\)     A1

\( \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ – 2}}{{[2(x + h) + 1][2x + 1]}}} \right)\)     A1

\( \Rightarrow f'(x) = \frac{{ – 2}}{{{{(2x + 1)}^2}}}\)     AG

[4 marks]

a.

let \(y = \frac{1}{{2x + 1}}\)

we want to prove that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = {( – 1)^n}\frac{{{2^n}n!}}{{{{(2x + 1)}^{n + 1}}}}\)

let \(n = 1 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = {( – 1)^1}\frac{{{2^1}1!}}{{{{(2x + 1)}^{1 + 1}}}}\)     M1

\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ – 2}}{{{{(2x + 1)}^2}}}\) which is the same result as part (a)

hence the result is true for \(n = 1\)     R1

assume the result is true for \(n = k{\text{ : }}\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = {( – 1)^k}\frac{{{2^k}k!}}{{{{(2x + 1)}^{k + 1}}}}\)     M1

\(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left[ {{{( – 1)}^k}\frac{{{2^k}k!}}{{{{(2x + 1)}^{k + 1}}}}} \right]\)     M1

\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left[ {{{( – 1)}^k}{2^k}k!{{(2x + 1)}^{ – k – 1}}} \right]\)     (A1)

\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( – 1)^k}{2^k}k!( – k – 1){(2x + 1)^{ – k – 2}} \times 2\)     A1

\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( – 1)^{k + 1}}{2^{k + 1}}(k + 1)!{(2x + 1)^{ – k – 2}}\)     (A1)

\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( – 1)^{k + 1}}\frac{{{2^{k + 1}}(k + 1)!}}{{{{(2x + 1)}^{k + 2}}}}\)     A1

hence if the result is true for \(n = k\) , it is true for \(n = k + 1\)

since the result is true for \(n = 1\) , the result is proved by mathematical induction     R1 

Note: Only award final R1 if all the M marks have been gained.

[9 marks]

b.

Question

A curve is defined by \(xy = {y^2} + 4\).

Show that there is no point where the tangent to the curve is horizontal.[4]

a.

Find the coordinates of the points where the tangent to the curve is vertical.[4]

b.
Answer/Explanation

Markscheme

\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1

a horizontal tangent occurs if \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) so \(y = 0\)     M1

we can see from the equation of the curve that this solution is not possible \((0 = 4)\) and so there is not a horizontal tangent     R1

[4 marks]

a.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{2y – x}}\) or equivalent with \(\frac{{{\text{d}}x}}{{{\text{d}}y}}\)

the tangent is vertical when \(2y = x\)     M1

substitute into the equation to give \(2{y^2} = {y^2} + 4\)     M1

\(y =  \pm 2\)     A1

coordinates are \((4,{\text{ }}2),{\text{ }}( – 4,{\text{ }} – 2)\)     A1

[4 marks]

Total [8 marks]

b.
Scroll to Top