IB Math Analysis & Approaches Questionbank-Topic: SL 3.7 The circular and Composite functions SL Paper 1

Question

The following diagram shows the graph of  \(f(x) = a\cos (bx)\) , for \(0 \le x \le 4\) .


There is a minimum point at P(2, − 3) and a maximum point at Q(4, 3) .

(i)     Write down the value of a .

(ii)    Find the value of b .

[3]
a(i) and (ii).

Write down the gradient of the curve at P.

[1]
b.

Write down the equation of the normal to the curve at P.

[2]
c.
Answer/Explanation

Markscheme

(i) \(a = 3\)     A1     N1

(ii) METHOD 1

attempt to find period     (M1)

e.g. 4 , \(b = 4\) , \(\frac{{2\pi }}{b}\)

\(b = \frac{{2\pi }}{4}\left( { = \frac{\pi }{2}} \right)\)     A1     N2

[3 marks]

METHOD 2

attempt to substitute coordinates     (M1)

e.g. \(3\cos (2b) = – 3\) , \(3\cos (4b) = 3\)

\(b = \frac{{2\pi }}{4}\left( { = \frac{\pi }{2}} \right)\)     A1     N2

[3 marks]

a(i) and (ii).

0     A1     N1

[1 mark]

b.

recognizing that normal is perpendicular to tangent     (M1)

e.g. \({m_1} \times {m_2} = – 1\) , \(m = – \frac{1}{0}\) , sketch of vertical line on diagram

\(x = 2\) (do not accept 2 or \(y = 2\) )     A1     N2

[2 marks]

c.

Question

[Maximum mark: 12] [without GDC]
Part of the graph of a trigonometric function f(x) is given below. There is a local maximum at (π/8,180) and a local minimum at (3π/8,20).

(a) Write down the values of
(i) the amplitude (ii) the central value (iii) the period [3]
(b) Express the function in the form f (x) = Asin Bx + C [3]
(c) Complete the following table by expressing f (x) in three alternative forms [6]

Answer/Explanation

Ans:
(a) amplitude = 80, central value = 100, period = π/2
(b) f(x) = 80sin 4x + 100, since \(B=\frac{2 \pi}{\text { Period }}=\frac{2 \pi}{\pi / 2}=4\)
(c) (i) \(f(x)=-80 \sin 4\left(x-\frac{\pi}{4}\right)+100\)     (\(D=\frac{\pi}{4}\) is the position of the 2nd (↓) root)
(ii) \(f(x)=80 \cos 4\left(x-\frac{\pi}{8}\right)+100\)     (\(D=\frac{\pi}{8}\) is the position of the maximum)
(iii) \(f(x)=-80 \cos 4\left(x-\frac{3 \pi}{8}\right)+100\)     (\(D=\frac{3 \pi}{8}\) is the position of the minimum)

Scroll to Top