Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.5 Identity function SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.5 Identity function SL Paper 1

Question

The function f is defined by f(x) = \(\frac{7x + 7}{2x – 4}\) for \(x\epsilon \mathbb{R}\), x ≠ 2.

(a) Find the zero of f(x).

(b) For the graph of y = f(x), write down the equation of
(i) the vertical asymptote;
(ii) the horizontal asymptote.

(c) Find \(f^{-1}\) (x), the inverse function of f(x).

Answer/Explanation

Answer:

(a) recognizing f(x) = 0
x = -1

(b) (i) x = 2 (must be an equation with x)
(ii) y = \(\frac{7}{2}\) (must be an equation with y)

(c) EITHER
interchanging x and y
2xy – 4x = 7y + 7
correct working with y terms on the same side: 2xy – 7y = 4x + 7

OR
2yx – 4y = 7x +7
correct working with x terms on the same side: 2yx – 7x = 4x + 7 
interchanging x and y OR making x the subject x = \(\frac{4y + 7}{2y – 7}\)

THEN
\(f^{-1}\)(x) = \(\frac{4x + 7}{2x – 7}\) (or equivalent) (\(x ≠ \frac{7}{2}\))

Question

Let \(f(x) = \ln (x + 5) + \ln 2\) , for \(x > – 5\) .

Find \({f^{ – 1}}(x)\) .[4]

a.

Let \(g(x) = {{\rm{e}}^x}\) .

Find \((g \circ f)(x)\) , giving your answer in the form \(ax + b\) , where \(a,b \in \mathbb{Z}\) .[3]

b.
Answer/Explanation

Markscheme

METHOD 1

\(\ln (x + 5) + \ln 2 = \ln (2(x + 5))\) \(( = \ln (2x + 10))\)     (A1)

interchanging x and y (seen anywhere)     (M1)

e.g. \(x = \ln (2y + 10)\)

evidence of correct manipulation     (A1)

e.g. \({{\rm{e}}^x} = 2y + 10\)

\({f^{ – 1}}(x) = \frac{{{{\rm{e}}^x} – 10}}{2}\)    A1     N2

METHOD 2

\(y = \ln (x + 5) + \ln 2\)

\(y – \ln 2 = ln(x + 5)\)     (A1)

evidence of correct manipulation     (A1)

e.g. \({{\rm{e}}^{y – \ln 2}} = x + 5\)

interchanging x and y (seen anywhere)     (M1)

e.g. \({{\rm{e}}^{x – \ln 2}} = y + 5\)

\({f^{ – 1}}(x) = {{\rm{e}}^{x – \ln 2}} – 5\)     A1     N2

[4 marks]

a.

METHOD 1

evidence of composition in correct order     (M1)

e.g. \((g \circ f)(x) = g(\ln (x + 5) + \ln 2)\)

\( = {{\rm{e}}^{\ln (2(x + 5))}} = 2(x + 5)\)

\((g \circ f)(x) = 2x + 10\)     A1A1     N2

METHOD 2

evidence of composition in correct order     (M1)

e.g. \((g \circ f)(x) = {{\rm{e}}^{\ln (x + 5) + \ln 2}}\)

\( = {{\rm{e}}^{\ln (x + 5)}} \times {{\rm{e}}^{\ln 2}} = (x + 5)2\)

\((g \circ f)(x) = 2x + 10\)     A1A1     N2

[3 marks]

b.

Question

Let \(f(x) = 2{x^3} + 3\) and \(g(x) = {{\rm{e}}^{3x}} – 2\) .

(i)     Find \(g(0)\) .

(ii)    Find \((f \circ g)(0)\) .[5]

a.

Find \({f^{ – 1}}(x)\) .[3]

b.
Answer/Explanation

Markscheme

(i) \(g(0) = {{\rm{e}}^0} – 2\)     (A1)

\( = – 1\)     A1     N2

(ii) METHOD 1

substituting answer from (i)     (M1)

e.g. \((f \circ g)(0) = f( – 1)\)

correct substitution \(f( – 1) = 2{( – 1)^3} + 3\)     (A1)

\(f( – 1) = 1\)     A1     N3

METHOD 2

attempt to find \((f \circ g)(x)\)     (M1)

e.g. \((f \circ g)(x) = f({{\rm{e}}^{3x}} – 2)\) \( = 2{({{\rm{e}}^{3x}} – 2)^3} + 3\)

correct expression for \((f \circ g)(x)\)     (A1)

e.g. \(2{({{\rm{e}}^{3x}} – 2)^3} + 3\)

\((f \circ g)(0) = 1\)     A1     N3

[5 marks]

a.

interchanging x and y (seen anywhere)     (M1)

e.g. \(x = 2{y^3} + 3\)

attempt to solve     (M1)

e.g. \({y^3} = \frac{{x – 3}}{2}\)

\({f^{ – 1}}(x) = \sqrt[3]{{\frac{{x – 3}}{2}}}\)     A1     N3

[3 marks]

b.
Scroll to Top