Home / IB Math Analysis & Approaches Questionbank-Topic: SL 2.3 Creating a sketch from information given SL Paper 1

IB Math Analysis & Approaches Questionbank-Topic: SL 2.3 Creating a sketch from information given SL Paper 1

Question

Let y = \(\frac{Inx}{x^{4}}\) for x > 0.

(a)        Show that \(\frac{dy}{dx}= \frac{1-4Inx}{x^{5}}\)

Consider the function defined  by f (x) \(\frac{Inx}{x^{4}}\) =  for x> 0 and its graph y = f (x) .

(b)        The graph of has a horizontal tangent at point P. Find the coordinates of P.                                                      [5]

(c)        Given that f ” (x) = \(\frac{20Lnx-9}{x^{6}}\) show that P is a local maximum point.                                                [3]

(d)        Solve f (x) > 0 for x > 0.                                                                                                                                                          [2]

(e) Sketch the graph of f , showing clearly the value of the x-intercept and the approximate position of point P.    [3]

Answer/Explanation

Ans

Question

Let \(f(x) = 3 + \frac{{20}}{{{x^2} – 4}}\) , for \(x \ne \pm 2\) . The graph of f is given below.


The y-intercept is at the point A.

(i)     Find the coordinates of A.

(ii)    Show that \(f'(x) = 0\) at A.[7]

a.

The second derivative \(f”(x) = \frac{{40(3{x^2} + 4)}}{{{{({x^2} – 4)}^3}}}\) . Use this to

(i)     justify that the graph of f has a local maximum at A;

(ii)    explain why the graph of f does not have a point of inflexion.[6]

b.

Describe the behaviour of the graph of \(f\) for large \(|x|\) .[1]

c.

Write down the range of \(f\) .[2]

d.
Answer/Explanation

Markscheme

(i) coordinates of A are \((0{\text{, }} – 2)\)     A1A1     N2

(ii) derivative of \({x^2} – 4 = 2x\) (seen anywhere)     (A1)

evidence of correct approach     (M1)

e.g. quotient rule, chain rule

finding \(f'(x)\)     A2

e.g. \(f'(x) = 20 \times ( – 1) \times {({x^2} – 4)^{ – 2}} \times (2x)\) , \(\frac{{({x^2} – 4)(0) – (20)(2x)}}{{{{({x^2} – 4)}^2}}}\)

substituting \(x = 0\) into \(f'(x)\) (do not accept solving \(f'(x) = 0\) )     M1

at A \(f'(x) = 0\)     AG     N0

[7 marks]

a.

(i) reference to \(f'(x) = 0\) (seen anywhere)     (R1)

reference to \(f”(0)\) is negative (seen anywhere)     R1

evidence of substituting \(x = 0\) into \(f”(x)\)     M1

finding \(f”(0) = \frac{{40 \times 4}}{{{{( – 4)}^3}}}\) \(\left( { = – \frac{5}{2}} \right)\)     A1

then the graph must have a local maximum     AG

(ii) reference to \(f”(x) = 0\) at point of inflexion     (R1)

recognizing that the second derivative is never 0     A1     N2

e.g. \(40(3{x^2} + 4) \ne 0\) , \(3{x^2} + 4 \ne 0\) , \({x^2} \ne  – \frac{4}{3}\) , the numerator is always positive

Note: Do not accept the use of the first derivative in part (b).

[6 marks]

b.

correct (informal) statement, including reference to approaching \(y = 3\)     A1     N1

e.g. getting closer to the line \(y = 3\) , horizontal asymptote at \(y = 3\)

[1 mark]

c.

correct inequalities, \(y \le – 2\) , \(y > 3\) , FT from (a)(i) and (c)     A1A1     N2

[2 marks]

d.

Question

Let \(f(x) = 6 + 6\sin x\) . Part of the graph of f is shown below.


The shaded region is enclosed by the curve of f , the x-axis, and the y-axis.

Solve for \(0 \le x < 2\pi \)

(i)     \(6 + 6\sin x = 6\) ;

(ii)    \(6 + 6\sin x = 0\) .[5]

a(i) and (ii).

Write down the exact value of the x-intercept of f , for \(0 \le x < 2\pi \) .[1]

b.

The area of the shaded region is k . Find the value of k , giving your answer in terms of \(\pi \) .[6]

c.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Give a full geometric description of this transformation.[2]

d.

Let \(g(x) = 6 + 6\sin \left( {x – \frac{\pi }{2}} \right)\) . The graph of f is transformed to the graph of g.

Given that \(\int_p^{p + \frac{{3\pi }}{2}} {g(x){\rm{d}}x}  = k\) and \(0 \le p < 2\pi \) , write down the two values of p.[3]

e.
Answer/Explanation

Markscheme

(i) \(\sin x = 0\)     A1

\(x = 0\) , \(x = \pi \)     A1A1     N2

(ii) \(\sin x = – 1\)     A1

\(x = \frac{{3\pi }}{2}\)    A1     N1

[5 marks]

a(i) and (ii).

\(\frac{{3\pi }}{2}\)     A1     N1

[1 mark]

b.

evidence of using anti-differentiation     (M1)

e.g. \(\int_0^{\frac{{3\pi }}{2}} {(6 + 6\sin x){\rm{d}}x} \)

correct integral \(6x – 6\cos x\) (seen anywhere)     A1A1

correct substitution     (A1)

e.g. \(6\left( {\frac{{3\pi }}{2}} \right) – 6\cos \left( {\frac{{3\pi }}{2}} \right) – ( – 6\cos 0)\) , \(9\pi  – 0 + 6\)

\(k = 9\pi + 6\)     A1A1     N3

[6 marks]

c.

translation of \(\left( {\begin{array}{*{20}{c}}
{\frac{\pi }{2}}\\
0
\end{array}} \right)\)     A1A1     N2

[2 marks]

d.

recognizing that the area under g is the same as the shaded region in f     (M1)

\(p = \frac{\pi }{2}\) , \(p = 0\)     A1A1     N3

[3 marks]

e.
Scroll to Top