Question
The radius r of a sphere increases at 0.3 inches per second. When the surface area S is \( 100\pi \) square inches, what is the rate of increase of the volume V in cubic inches per second? \( \left( S = 4\pi r^2, V = \frac{4}{3}\pi r^3 \right) \)
A \( 10\pi \)
B \( 12\pi \)
C \( 22.5\pi \)
D \( 25\pi \)
E \( 30\pi \)
▶️ Answer/Explanation
Solution
Step 1: Find Radius
Surface area: \( S = 4\pi r^2 = 100\pi \)
\( r^2 = 25 \)
\( r = 5 \) inches
Step 2: Volume Rate of Change
Volume: \( V = \frac{4}{3}\pi r^3 \)
Derivative: \( \frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = 4\pi r^2 \cdot \frac{dr}{dt} \)
Given: \( \frac{dr}{dt} = 0.3 \), \( r = 5 \)
\( \frac{dV}{dt} = 4\pi (5)^2 \cdot 0.3 = 4\pi \cdot 25 \cdot 0.3 = 30\pi \)
Answer: E
Question
The area of a circular region increases at \( 96\pi \) square meters per second. When the area is \( 64\pi \) square meters, how fast, in meters per second, is the radius increasing?
A 6
B 8
C 16
D \( \sqrt[4]{3} \)
E \( \sqrt[12]{3} \)
▶️ Answer/Explanation
Solution
Step 1: Find Radius
Area: \( A = \pi r^2 = 64\pi \)
\( r^2 = 64 \)
\( r = 8 \) meters
Step 2: Radius Rate of Change
Area derivative: \( \frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt} \)
Given: \( \frac{dA}{dt} = 96\pi \), \( r = 8 \)
\( 96\pi = 2\pi (8) \cdot \frac{dr}{dt} \)
\( \frac{dr}{dt} = \frac{96\pi}{16\pi} = 6 \)
Answer: A
Question
A spherical balloon is being inflated. What is the volume of the sphere when the rate of increase of the surface area is four times the rate of increase of the radius?
A \( \frac{1}{2\pi} \) cubic units
B \( \frac{3\pi r^2}{2} \) cubic units
C \( 4\pi^2 \) cubic units
D \( \frac{1}{6\pi^2} \) cubic units
▶️ Answer/Explanation
Solution
Step 1: Relate Surface Area Rate
Surface area: \( S = 4\pi r^2 \)
Derivative: \( \frac{dS}{dt} = 8\pi r \cdot \frac{dr}{dt} \)
Given: \( \frac{dS}{dt} = 4 \frac{dr}{dt} \)
\( 8\pi r \cdot \frac{dr}{dt} = 4 \frac{dr}{dt} \)
\( 8\pi r = 4 \)
\( r = \frac{1}{2\pi} \)
Step 2: Calculate Volume
Volume: \( V = \frac{4}{3}\pi r^3 \)
Substitute: \( r = \frac{1}{2\pi} \)
\( V = \frac{4}{3}\pi \left( \frac{1}{2\pi} \right)^3 = \frac{4}{3}\pi \cdot \frac{1}{8\pi^3} = \frac{4}{24\pi^2} = \frac{1}{6\pi^2} \)
Answer: D
Question
A conical funnel has a base diameter of 4 cm and a height of 5 cm. The funnel is initially full, but water is draining at a constant rate of \(2cm^{3}/s\). How fast is the water level falling when the water is 2.5 cm high?
(A) \(\frac{1}{2\pi}\) cm/s
(B) \(-\frac{1}{2\pi}cm/s\)
(C) \(\frac{2}{\pi }cm/s\)
(D)\(-\frac{2}{\pi } cm/s\)
▶️Answer/Explanation
Ans:(D)
\(\frac{2}{5}=\frac{r}{r}\)(Similar triangles)
2h=5r
\(r=\frac{2h}{5}\)
\(V=\frac{1}{3}\pi r^{2}h\)
\(V=\frac{1}{3}\pi \left ( \frac{2h}{5} \right )^{2}h\)
\(V=\frac{1}{3}\pi \left ( \frac{4h^{2}}{25} \right )h\)
\(V=\frac{4}{75}\pi h^{3}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=3\left ( \frac{4}{75} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=\left ( \frac{4}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=-2cm^{3}/s\)
\(-2=\left ( \frac{4}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(-1=\left ( \frac{2}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{25}{2\pi h^{2}}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{25}{2\pi (2.5)^{2}}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{2}{\pi }cm/s\)