Home / AP Calculus AB: 4.3 Rates of Change in Applied Contexts Other  Than Motion – Exam Style questions with Answer- MCQ

AP Calculus AB: 4.3 Rates of Change in Applied Contexts Other  Than Motion – Exam Style questions with Answer- MCQ

Question

The radius r of a sphere increases at 0.3 inches per second. When the surface area S is \( 100\pi \) square inches, what is the rate of increase of the volume V in cubic inches per second? \( \left( S = 4\pi r^2, V = \frac{4}{3}\pi r^3 \right) \)
A \( 10\pi \)
B \( 12\pi \)
C \( 22.5\pi \)
D \( 25\pi \)
E \( 30\pi \)

▶️ Answer/Explanation

Solution

Step 1: Find Radius

Surface area: \( S = 4\pi r^2 = 100\pi \)
\( r^2 = 25 \)
\( r = 5 \) inches

Step 2: Volume Rate of Change

Volume: \( V = \frac{4}{3}\pi r^3 \)
Derivative: \( \frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = 4\pi r^2 \cdot \frac{dr}{dt} \)
Given: \( \frac{dr}{dt} = 0.3 \), \( r = 5 \)
\( \frac{dV}{dt} = 4\pi (5)^2 \cdot 0.3 = 4\pi \cdot 25 \cdot 0.3 = 30\pi \)

Answer: E

Question

The area of a circular region increases at \( 96\pi \) square meters per second. When the area is \( 64\pi \) square meters, how fast, in meters per second, is the radius increasing?
A 6
B 8
C 16
D \( \sqrt[4]{3} \)
E \( \sqrt[12]{3} \)

▶️ Answer/Explanation

Solution

Step 1: Find Radius

Area: \( A = \pi r^2 = 64\pi \)
\( r^2 = 64 \)
\( r = 8 \) meters

Step 2: Radius Rate of Change

Area derivative: \( \frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt} \)
Given: \( \frac{dA}{dt} = 96\pi \), \( r = 8 \)
\( 96\pi = 2\pi (8) \cdot \frac{dr}{dt} \)
\( \frac{dr}{dt} = \frac{96\pi}{16\pi} = 6 \)

Answer: A

Question

A spherical balloon is being inflated. What is the volume of the sphere when the rate of increase of the surface area is four times the rate of increase of the radius?
A \( \frac{1}{2\pi} \) cubic units
B \( \frac{3\pi r^2}{2} \) cubic units
C \( 4\pi^2 \) cubic units
D \( \frac{1}{6\pi^2} \) cubic units

▶️ Answer/Explanation

Solution

Step 1: Relate Surface Area Rate

Surface area: \( S = 4\pi r^2 \)
Derivative: \( \frac{dS}{dt} = 8\pi r \cdot \frac{dr}{dt} \)
Given: \( \frac{dS}{dt} = 4 \frac{dr}{dt} \)
\( 8\pi r \cdot \frac{dr}{dt} = 4 \frac{dr}{dt} \)
\( 8\pi r = 4 \)
\( r = \frac{1}{2\pi} \)

Step 2: Calculate Volume

Volume: \( V = \frac{4}{3}\pi r^3 \)
Substitute: \( r = \frac{1}{2\pi} \)
\( V = \frac{4}{3}\pi \left( \frac{1}{2\pi} \right)^3 = \frac{4}{3}\pi \cdot \frac{1}{8\pi^3} = \frac{4}{24\pi^2} = \frac{1}{6\pi^2} \)

Answer: D

Question

 A conical funnel has a base diameter of 4 cm and a height of 5 cm. The funnel is initially full, but water is draining at a constant rate of \(2cm^{3}/s\). How fast is the water level falling when the water is 2.5 cm high?
(A) \(\frac{1}{2\pi}\) cm/s
(B) \(-\frac{1}{2\pi}cm/s\)
(C) \(\frac{2}{\pi }cm/s\)
(D)\(-\frac{2}{\pi } cm/s\)

▶️Answer/Explanation

Ans:(D)

\(\frac{2}{5}=\frac{r}{r}\)(Similar triangles)
2h=5r
\(r=\frac{2h}{5}\)
\(V=\frac{1}{3}\pi r^{2}h\)
\(V=\frac{1}{3}\pi \left ( \frac{2h}{5} \right )^{2}h\)
\(V=\frac{1}{3}\pi \left ( \frac{4h^{2}}{25} \right )h\)
\(V=\frac{4}{75}\pi h^{3}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=3\left ( \frac{4}{75} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=\left ( \frac{4}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} V}{\mathrm{d} t}=-2cm^{3}/s\)
\(-2=\left ( \frac{4}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(-1=\left ( \frac{2}{25} \right )\pi h^{2}\frac{\mathrm{d} h}{\mathrm{d} t}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{25}{2\pi h^{2}}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{25}{2\pi (2.5)^{2}}\)
\(\frac{\mathrm{d} h}{\mathrm{d} t}=-\frac{2}{\pi }cm/s\)

Scroll to Top