Home / AP Calculus AB : 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals- Exam Style questions with Answer- MCQ

AP Calculus AB : 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals- Exam Style questions with Answer- MCQ

Question

At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is \(24t^{2}\) feet per second per second. Through how many feet does the particle move during the first 2 seconds?

(A) 32                                        (B) 48                                   (C) 64                                                 (D) 96                                                  (E) 192

▶️Answer/Explanation

Ans:A

Question

The acceleration α of a body moving in a straight line is given in terms of time t by α= −8 6t . If the velocity of the body is 25 at t =1 and if s (t) is the distance of the body from the origin at time t, what is s(4)-s(2)?
(A) 20                                             (B) 24                                  (C) 28                                       (D) 32                                                                                  (E) 42

▶️Answer/Explanation

Ans:D

Question

The velocity of a particle moving on a line at time t is \(v=3t^{\frac{1}{2}}+5t^{\frac{3}{2}}\)  meters per second. How many   meters did the particle travel from t = 0 to t = 4?
(A) 32                                (B) 40                                                                 (C) 64                                              (D) 80                                          (E) 184

▶️Answer/Explanation

Ans:D

Question

What is the domain of the function f given by\(f(x)=\frac{\sqrt{x^{2}-4}}{x-3}\)?

(A) {x : x ≠3 }                  (B) {x :|x|  ≤ 2}                        (C) {x :|x| ≥ 2}                    (D) {x : |x| ≥ 2 and x ≠3 }                      (E) {x: x ≥ 2 and x≠ 3}

▶️Answer/Explanation

Ans:D

\(x^2-4\geq 0 and x\neq 3\Rightarrow |x|\geq 2 and x\neq 3\)

Scroll to Top