Home / AP Calculus AB : 8.4 Finding the Area Between Curves Expressed as Functions of x- Exam Style questions with Answer- MCQ

AP Calculus AB : 8.4 Finding the Area Between Curves Expressed as Functions of x- Exam Style questions with Answer- MCQ

Question

The area of the region enclosed by the graph of \(y=x^2+1\)and the line y = 5 is

(A) \(\frac{14}{3}\)                           (B) \(\frac{16}{3}\)                                    (C) \(\frac{28}{3}\)                                               (D) \(\frac{32}{3}\)                                   (E) 8π

▶️Answer/Explanation

Ans:D

The area of the region is given by\(\int_{-2}^{2}(5-(x^2+1))dx=2(4x-\frac{1}{3}x^3)|_{0}^{2}=2\left ( 8-\frac{8}{3} \right )=\frac{32}{3}\)

Question

Let R be the region in the first quadrant enclosed by the graph of \( y=(x+1)^{\frac{1}{3}}dx\) , the line x = 7 ,the x-axis, and the y-axis. The volume of the solid generated when R is revolved about the y-axis is given by

(A)\(\pi \int_{0}^{7}(x+1)^{\frac{2}{3}dx}\)                                    (B)\(2\pi \int_{0}^{7}x(x+1)^{\frac{1}{3}dx}\)                                (C)\(\pi \int_{0}^{2}(x+1)^{\frac{2}{3}dx}\)           (D)\(2\pi \int_{0}^{2}x(x+1)^{\frac{1}{3}dx}\)                                              (E)\(\pi \int_{0}^{7}(y^{3}-1)^{2}dy\)

▶️Answer/Explanation

Ans:B

Question

 If\( y = 2x – 8\) , what is the minimum value of the product xy ?
(A) –16                                     (B) –8                                        (C) –4                           (D) 0                                              (E) 2

▶️Answer/Explanation

Ans:B

\(p(x)=2x^2-8x;P'(x)=4x-8;p\)’; changes from negative to positive at x= 2.p (2)= 8

Question

 The area of the region between the graph of \(y= 4x^3 +2\) and the x-axis from \(x =1\) to \(x = 2\) is

(A) 36                 (B) 23                 (C) 20                     (D) 17                       (E) 9

▶️Answer/Explanation

Ans:D

\(\int_{0}^{2}(4x^3+2)dx= (x^4+2x)|_{0}^{2}=(16+4)-(1+2)=17\)

Scroll to Top