Home / AP Calculus AB and BC: Chapter 2 – Differentiation :2.5 -Derivatives of Exponential and Logarithmic Functions Study Notes

AP Calculus AB and BC: Chapter 2 – Differentiation :2.5 -Derivatives of Exponential and Logarithmic Functions Study Notes

The Derivatives of Exponential Function

\(\frac{d}{dx}\left [ e^{x} \right ]=e^{x}\)                    \(\frac{d}{dx}\left [ e^{u} \right ]=e^{u}\frac{du}{dx}\)

\(\frac{d}{dx}\left [ a^{x} \right ]=a^{x}lna\)                    \(\frac{d}{dx}\left [ a^{u} \right ]=a^{u}\left ( lna \right )\frac{du}{dx}\)

Example 1

  •  Find \({y}”\) if \(y=e^{cosx}.\)
▶️Answer/Explanation

Solution

\({y}’=\frac{d}{dx}\left ( e^{cosx} \right )\)

\(=e^{cosx}\frac{d}{dx}\left ( cosx \right )\)                   \(\frac{d}{dx}\left [ e^{u} \right ]=e^{u}\frac{du}{dx}\)

\(=e^{cosx}\left ( -sinx \right )\)

\({y}”=e^{cosx}\cdot \left ( -cosx \right )+e^{cosx}\left ( -sinx \right )\cdot \left ( -sinx \right )\)

\(=e^{cosx}\left [ -cosx+sin^{2}x \right ]\)

Example 2 

Differentiate \(y=3^{\sqrt{x^{2}-x}}.\)

▶️Answer/Explanation

Solution

\(\frac{dy}{dx}=3^{\sqrt{x^{2}-x}}\left ( ln3 \right )\frac{d}{dx}\left ( \sqrt{x^{2}-x} \right )\)              \(\frac{d}{dx}\left [ a^{u} \right ]=a^{u}\left ( lna \right )\frac{du}{dx}\)

\(=3^{\sqrt{x^{2}-x}}\left ( ln3 \right )\left ( \frac{1}{2\sqrt{x^{2}-x}} \right )\frac{d}{dx}\left ( x^{2}-x \right )\)

\(=ln3\left ( 3^{\sqrt{x^{2}-x}} \right )\left ( \frac{2x-1}{2\sqrt{x^{2}-x}} \right )\)

The Derivatives of Logarithmic Function

\(\frac{d}{dx}\left ( lnx \right )=\frac{1}{x}\)              \(\frac{d}{dx}\left ( log_{a}x \right )=\frac{1}{lna}\cdot \frac{1}{x}\)

\(\frac{d}{dx}\left ( ln u \right )=\frac{1}{u}\frac{du}{dx}\)             \(\frac{d}{dx}\left ( log_{a}u \right )=\frac{1}{lna}\cdot \frac{1}{u}\frac{du}{dx}\)

Properties of Logarithms

\(lnxy=lnx+lny\)             \(ln\frac{x}{y}=lnx-lny\)

\(lnx^{p}=plnx\)              \(e^{lnx}=x\)

Example 4 □ Find \({y}’\) if \(y=\frac{lnx}{x^{2}}.\)

▶️Answer/Explanation

Solution

\(y=\frac{lnx}{x^{2}}=lnx\cdot x^{-2}\)

\({y}’=lnx\frac{d}{dx}x^{-2}+x^{-2}\frac{d}{dx}lnx\)              Product Rule

\(=lnx\left ( -2x^{-3} \right )+x^{-2}\cdot \frac{1}{x}\)

\(=\frac{-2lnx}{x^{3}}+\frac{1}{x^{2}}\cdot \frac{1}{x}\)

\(=\frac{-2lnx+1}{x^{3}}\)

Example 5 

  • Find \({y}’\) if \(y=x^{lnx}.\)
▶️Answer/Explanation

Solution

\(y=x^{lnx}\)

\(lny=ln\left ( x^{lnx} \right )\)                       Take natural log of both sides.

\(lny=lnx\cdot lnx=\left ( lnx \right )^{2}\)                        \(lnx^{p}=plnx\)

\(\frac{d}{dx}lny=\frac{d}{dx}\left ( lnx \right )^{2}\)

\(\frac{1}{y}\frac{d}{dx}\left ( y \right )=2lnx\frac{d}{dx}\left ( lnx \right )\)                       Chain Rule

\(\frac{1}{y}\cdot {y}’=2lnx\cdot \frac{1}{x}\)                       \(\frac{dy}{dx}={y}’\)

\({y}’=y\left [ 2lnx\cdot \frac{1}{x} \right ]\)                       Multiply by y on both sides.

\({y}’=x^{lnx}\cdot \frac{2lnx}{x}\)

Exercises – Derivatives of Exponential and Logarithmic Functions

Multiple Choice Questions

1. \(\underset{h\rightarrow 0}{lim}\frac{\frac{1}{2}\left [ ln\left ( e+h \right )-1 \right ]}{h}\) is

(A) \({f}’\left ( 1 \right )\), where \(f\left ( x \right )=ln\sqrt{x}\)

(B) \({f}’\left ( 1 \right )\), where \(f\left ( x \right )=ln\sqrt{x+e}\)

(C) \({f}’\left ( e \right )\), where \(f\left ( x \right )=ln\sqrt{x}\)

(D) \({f}’\left ( e \right )\), where \(f\left ( x \right )=ln\left ( \frac{x}{2} \right )\)

▶️Answer/Explanation

Ans:

1. C

2. If \(f\left ( x \right )=e^{tanx}\), then \({f}’\left ( \frac{\pi }{4} \right )=\)

(A) \(\frac{e}{2}\)               (B) e                (C) 2e               (D) \(\frac{e^{2}}{2}\)

▶️Answer/Explanation

Ans:

2. C

3. If \(y=ln\left ( cosx \right )\), then \({y}’=\)

(A) − tan x               (B) tan x                (C) −cot x               (D) csc x

▶️Answer/Explanation

Ans:

3. A

4. If \(y=x^{x}\), then \({y}’=\)

(A) \(x^{x}lnx\)               (B) \(x^{x}\left ( 1+lnx \right )\)                (C) \(x^{x}\left ( x+lnx \right )\)               (D) \(\frac{x^{x}lnx}{x}\)

▶️Answer/Explanation

Ans:

4. B

5. If \(y=e^{\sqrt{x^{2}+1}}\), then y’=

(A) \(\sqrt{x^{2}+1}e^{\sqrt{x^{2}+1}}\)

(B) \(2x\sqrt{x^{2}+1}e^{\sqrt{x^{2}+1}}\)

(C) \(\frac{e\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}\)

(D) \(\frac{xe^{\sqrt{x^{2}+1}}}{\sqrt{x^{2}+1}}\)

▶️Answer/Explanation

Ans:

5. D

6. If \(y=\left ( sinx \right )^{1/x}\), then \({y}’=\)

(A) \(\left ( sinx \right )^{\frac{1}{x}}\left [ \frac{ln\left ( sinx \right )}{x} \right ]\)

(B) \(\left ( sinx \right )^{\frac{1}{x}}\left [ \frac{x-ln\left ( sinx \right )}{x^{2}} \right ]\)

(C) \(\left ( sinx \right )^{\frac{1}{x}}\left [ \frac{xsinx-ln\left ( sinx \right )}{x^{2}} \right ]\)

(D) \(\left ( sinx \right )^{\frac{1}{x}}\left [ \frac{xcotx-ln\left ( sinx \right )}{x^{2}} \right ]\)

▶️Answer/Explanation

Ans:

6. D

7. If \(f\left ( x \right )=ln\left [ sec\left ( lnx \right ) \right ]\), then \({f}’\left ( e \right )=\)

(A) \(\frac{cos1}{e}\)               (B) \(\frac{sin1}{e}\)                (C) \(\frac{tan1}{e}\)               (D) \(\frac{cot1}{e}\)

▶️Answer/Explanation

Ans:

7. C

8. If \(y=x^{ln\sqrt{x}}\), then \({y}’=\)

(A) \(\frac{x^{ln\sqrt{x}}lnx}{2x}\)

(B) \(\frac{x^{ln\sqrt{x}}lnx}{x}\)

(C) \(\frac{2x^{ln\sqrt{x}}lnx}{x}\)

(D) \(\frac{x^{ln\sqrt{x}}\left ( 1+lnx \right )}{x}\)

▶️Answer/Explanation

Ans:

8. B

Free Response Questions

9. Let \(f\left ( x \right )=xe^{x}\) and \(f^{\left ( n \right )}\left ( x \right )\) be the nth derivative of f with respect to x . If \(f^{\left ( 10 \right )}\left ( x \right )=\left ( x+n \right )e^{x}\), what is the value of n ?

▶️Answer/Explanation

Ans:

9. 10

10. Let f and h be twice differentiable functions such that \(h\left ( x \right )=e^{f\left ( x \right )}\). If \({h}”\left ( x \right )=e^{f\left ( x \right )}\left [ 1+x^{2} \right ]\), then \({f}’\left ( x \right )=\)

▶️Answer/Explanation

Ans:

10. x

Scroll to Top